
AADL2OSGi - a short
introduction
1. Goal

Make it easy for developers to transform their AADL models into
a running prototype that conforms to the semantics of their model
(as far as this is possible with Java/RTSJ/OSGi).

— aadl2osgi

2. Terms and Basics

2.1. AADL

Great modeling language to describe performance-critical systems. Further
information can be found at

• http://www.aadl.info/aadl/currentsite/

• https://wiki.sei.cmu.edu/aadl/index.php/Main_Page

• https://github.com/osate (Reference Tooling)

2.2. Xtend

Xtend1 is a flexible and expressive dialect of Java, which compiles into readable
Java 5/6/7/8 compatible source code. You can use any existing Java library
seamlessly. The compiled output is readable and pretty-printed, and tends to run
as fast as the equivalent handwritten Java code.

Don’t be shy… if you can write Java code, then you can write Xtend code as well ;)

We use Xtend’s Active Annotations2 to turn simple Xtend classes and fields into
code that conforms to the semantics of AADL.

1 http://www.eclipse.org/xtend/
2 https://eclipse.org/xtend/documentation/204_activeannotations.html

1

http://www.aadl.info/aadl/currentsite/
https://wiki.sei.cmu.edu/aadl/index.php/Main_Page
https://github.com/osate
http://www.eclipse.org/xtend/
https://eclipse.org/xtend/documentation/204_activeannotations.html
http://www.eclipse.org/xtend/
https://eclipse.org/xtend/documentation/204_activeannotations.html

AADL2OSGi - a short introduction

2.3. OSGi

The OSGi specification describes a modular system and
a service3 platform for the Java4 programming language
that implements a complete and dynamic component
model5 , something that does not exist in standalone Java/
https://en.wikipedia.org/wiki/Virtual_machine[VM] environments.
Applications6 or components, coming in the form of
bundles7 for deployment8 , can be remotely installed, started,
stopped, updated, and uninstalled without requiring a reboot9 ;
management of Java packages10 /https://en.wikipedia.org/wiki/
Class_(computer_science)[classes] is specified in great detail.
Application life cycle management is implemented via APIs that
allow for remote downloading11 of management policies. The
service registry allows bundles to detect the addition of new
services, or the removal of services, and adapt accordingly.

— Wikipedia

OSGi is the platform in the background to which we compile our annotated classes
and fields. The parts that are important for you as a user will be highlighted later
in this document, but if you are curious I recommend the following sites to get a
first glimpse of what is possible with OSGi:

• http://enroute.osgi.org/

• http://blog.vogella.com/2016/02/09/osgi-bundles-fragments-dependencies/

• http://blog.vogella.com/2016/06/21/getting-started-with-osgi-declarative-
services/

• http://blog.vogella.com/2016/09/26/configuring-osgi-declarative-services/

3 https://en.wikipedia.org/wiki/Service_(systems_architecture)
4 https://en.wikipedia.org/wiki/Java_(programming_language)
5 https://en.wikipedia.org/wiki/Component_model
6 https://en.wikipedia.org/wiki/Application_software
7 https://en.wikipedia.org/wiki/OSGi#Bundles
8 https://en.wikipedia.org/wiki/Software_deployment
9 https://en.wikipedia.org/wiki/Reboot_(computer)
10 https://en.wikipedia.org/wiki/Java_package
11 https://en.wikipedia.org/wiki/Downloading

2

https://en.wikipedia.org/wiki/Service_(systems_architecture)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Component_model
https://en.wikipedia.org/wiki/Component_model
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/OSGi#Bundles
https://en.wikipedia.org/wiki/Software_deployment
https://en.wikipedia.org/wiki/Reboot_(computer)
https://en.wikipedia.org/wiki/Java_package
https://en.wikipedia.org/wiki/Downloading
http://enroute.osgi.org/
http://blog.vogella.com/2016/02/09/osgi-bundles-fragments-dependencies/
http://blog.vogella.com/2016/06/21/getting-started-with-osgi-declarative-services/
http://blog.vogella.com/2016/06/21/getting-started-with-osgi-declarative-services/
http://blog.vogella.com/2016/09/26/configuring-osgi-declarative-services/
https://en.wikipedia.org/wiki/Service_(systems_architecture)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Component_model
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/OSGi#Bundles
https://en.wikipedia.org/wiki/Software_deployment
https://en.wikipedia.org/wiki/Reboot_(computer)
https://en.wikipedia.org/wiki/Java_package
https://en.wikipedia.org/wiki/Downloading

AADL2OSGi - a short introduction

• http://blog.vogella.com/2017/02/13/control-osgi-ds-component-instances/

• http://blog.vogella.com/2017/02/24/control-osgi-ds-component-instances-via-
configuration-admin/

3. Installation

I chose to publish this setup as a VirtualBox image as it is a little bit tricky
to get everything up and running with the JamaicaVM (our targeted RTSJ
implementation). Therefore:

• Download VirtualBox12 and install it on your machine

• Download VB image13 and import it to VirtualBox (just doublecklick on it, then
follow the wizard)

After you have imported the VB image you can start up the virtual machine

This image is a 64-bit Linux. Your PC must support
hardware virtualization in order to be able to run this image!
On many PCs hardware virtualization is turned off within
BIOS → Turn it on ;)

4. Project Structure

On the desktop of the virtual machine you should see an Eclipse installation,
whose package explorer should look something like this after startup:

12 https://www.virtualbox.org/
13 https://drive.google.com/file/d/0Bw1daHW2hcyZbDJ4NDZaSEx3YkE/view?usp=sharing

3

http://blog.vogella.com/2017/02/13/control-osgi-ds-component-instances/
http://blog.vogella.com/2017/02/24/control-osgi-ds-component-instances-via-configuration-admin/
http://blog.vogella.com/2017/02/24/control-osgi-ds-component-instances-via-configuration-admin/
https://www.virtualbox.org/
https://drive.google.com/file/d/0Bw1daHW2hcyZbDJ4NDZaSEx3YkE/view?usp=sharing
https://www.virtualbox.org/
https://drive.google.com/file/d/0Bw1daHW2hcyZbDJ4NDZaSEx3YkE/view?usp=sharing

AADL2OSGi - a short introduction

4.1. de.uniaugsburg.smds.aadl2osgi.annotations

This project contains the Active Annotations which enable us to transform plain
Xtend classes and fields into a running OSGi application. All annotations are
named like their corresponding AADL component counterpart, e.g. Thread =
@AADLThread.

Each annotation is kept in its own Xtend file, which contains the annotation and
its corrresponding processor. The util package contains some classes that help
with navigation between annotations, creating OSGi references in the generated
code and so on.

4.2. de.uniaugsburg.smds.aadl2osgi.test

This project contains a sample application which is written down in the
Comopnents.xtend file:

It also contains the corresponding bndrun file:

4

AADL2OSGi - a short introduction

4.3. de.uniaugsburg.smds.aadl2osgi.util

This project only contains shared interfaces that are needed during generation
and during runtime alike. Those interfaces are split into two packages curretnly:
fw and user. fw contains the interfaces which can be seen from the classes of our
generated framework and user contains the interfaces that are meant for the user
to use when he accesses classes generated by the active annotations, e.g. while
accessing an InDataPort.

5. AADL in Xtend/Java - Easy as pie

The aforementioned sample application consists of a Process (MyProcess), which
contains two Threads (MySender, MyReceiver). MySender has an out data port,
MyReceiver an in data port and both are connected via a port connection. Have
a look at the next figure to see how easy it is to declare such a system in Xtend.

5

AADL2OSGi - a short introduction

6

AADL2OSGi - a short introduction

Right now these annotations are the only ones that are supported (it’s a
prototype ;)), but we’re working on the next iteration. Stuff that is on our
roadmap are for example: Data/Subprogram components, data/subprogram
access connections and modes.

5.1. The example in detail

@AADLProcess

This one does not really do much. In the background this class is translated
into an OSGi declarative service with references to its threads, which will
also be translated into declarative services. The declared port connection is
translated into a separate class. There are also no parameters that can be set on
@AADLProcess, so that’s it.

@AADLThread

This annotation is the most complex one as threads usually contain the running
code, have to define a dispatch protocol, a period, a deadline and stuff like that.
Therefore, the parameters that can be changed are:

• periodMS: the millisecond part of the period of this thread (default = 1000)

• periodNS: the nanosecond part of the period of this thread (default = 0)

• deadlineMs/deadlineNs: see period (defaults: 500 / 0)

• priority: the priority of this thread (default 11 (that’s the lowest hard real-time
priority in RTSJ))

• dispatchProtocol: can be periodic, sporadic, etc. but currently we only support
periodic threads (default = periodic)

An addtitional parameter on this annotation is parent. This one mustbe set to the
class that declares this Thread to be a subcomopnent of it. This parameter has
nothing to do with the AADL model, but is needed by our translation.

This class is translated into several more classes, e.g. a framework-class, phaser-
class, user-class. The details of how and why will be explained in a paper to come.

Within a class annotated with @AADLThread one should annotate at
least one method with @ComputeEntrypoint as this is the code that is

7

AADL2OSGi - a short introduction

executed within each dispatch cycle. The annotations @InitializeEntrypoint and
FinalizeEntrypoint can be used likewise. They are executed on startup and
shutdown of this thread.

@InDataPort / @OutDataPort / @PortConnection

Those annotation do what their name implies, they create data ports an port
connections. InDataPorts can only be read, OutDataPorts can only be written.
PortConnections will never be used by the user directly, as the framework takes
care of transmitting data over the defined connections. For each you can define
the datatype that they hold (currently only Integer, Double, Float, String, Boolean,
Long) and should be notified if there is a mismatch between the datatypes
of outgoing/ingoing ports or the connection over which the data should be
transmitted. You also can define at which point in time data shall be sent or
received via the annotation parameters inputTime, outputTime.

5.2. What to try

First start up the whole thing by going to usecase1.bndrun and clicking on
Run OSGi. Now you should see the console output generated by the two
@ComputeEntrypoint methods. One is sending and the other one receiving.

8

AADL2OSGi - a short introduction

In your console you can type lb (for list bundles), hit enter and should get an
output similar to the follwoing one:

Now you could try to type something like stop 10 (10 is the number of the
usecase1 bundle) which should stop this bundle and therefore stop the output of
both, sender and receiver. You also could type start 10 to restart this bundle.

One great thing about OSGi is the possibility to rewrite your code and redeploy
it into the running system. You can now go to Components.xtend and write
something like println('Activated Sender') into the @InitializeEntrypoint method
of your sender class. (You can also do this likewise for the receiver and both ther
@ FinalizeEntrypoint methods to get a better picture of their lifecycle). Now save
everything and in your console should appear the text you just typed in your output
statement.

Each time you now start and stop the bundle the text of both methods should be
printed to the console.

You can also go a little step further and change the periodMs of one or both
threads, save everything and will see that (at runtime) your code gets reloaded
and will reflect the changes you just made to the thread.

9

10

	AADL2OSGi - a short introduction
	1. Goal
	2. Terms and Basics
	2.1. AADL
	2.2. Xtend
	2.3. OSGi

	3. Installation
	4. Project Structure
	4.1. de.uniaugsburg.smds.aadl2osgi.annotations
	4.2. de.uniaugsburg.smds.aadl2osgi.test
	4.3. de.uniaugsburg.smds.aadl2osgi.util

	5. AADL in Xtend/Java - Easy as pie
	5.1. The example in detail
	@AADLProcess
	@AADLThread
	@InDataPort / @OutDataPort / @PortConnection

	5.2. What to try

