

The Engineering Meetings Board has approved this paper for publication. It has successfully completed SAE’s peer review process under the supervision of
the session organizer. This process requires a minimum of three (3) reviews by industry experts.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.
ISSN 0148-7191
Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE. The author is solely responsible for the content of
the paper.
SAE Customer Service: Tel: 877-606-7323 (inside USA and Canada)
 Tel: 724-776-4970 (outside USA)
 Fax: 724-776-0790
 Email: CustomerService@sae.org
SAE Web Address: http://www.sae.org

Printed in USA

09ATC-0271

Challenges in Validating Safety-Critical Embedded Systems

Peter H. Feiler
Software Engineering Institute

Copyright © 2009 SAE International

ABSTRACT

The embedded software has played an increasing role in
safety-critical systems. At the same time the current
development process of “build, then integrate” has
proven unaffordable for the Aerospace industry. This
paper outlines challenges in safety-critical embedded
systems in addressing system-level faults that are
currently discovered late in the development life cycle.
We then discuss an architecture-centric approach to
model-based engineering, i.e., to complement the
validation of systems with analysis of different
operational quality aspects from an architecture model. A
key technology in this approach is the Architecture
Analysis & Design Language (AADL), an SAE
International standard for embedded software system. It
supports analysis of operational qualities such as
responsiveness, safety-criticality, security, and reliability
through model annotations. A number of industry
initiatives have been underway to demonstrate the
feasibility of using this technology in industrial practice.

INTRODUCTION

Embedded software systems have become a key
component of systems, both in terms of contribution to
the safety-criticality of the system and in terms of cost.
For example, in the Aerospace industry the size of the
onboard software has doubled every four years and has
reached over 20M sources lines. Unfortunately, current
software development processes of build, integrate and
test are reaching their limit of affordability, as the cost of
repair has grown. A 2002 National Institute of Standards
and Technology (NIST) study [1] shows that 70% of
faults to be introduced early in the life cycle, while 80% of
them are not caught until integration test or later with a
repair cost of 10x or higher. Figure 1 shows percentages

or fault introduction, discovery, and cost factor. If we can
discover a portion of those faults earlier in the life cycle,
we have the potential of leveraged cost savings.

Figure 1: Benefits of Early Fault Discovery

In this paper, we examine the faults that persist late into
the development life cycle. In particular, we ask why it is
the case that, despite that fact that these systems have
been designed with fault tolerance and safety-criticality in
mind, a high percentage of system-level faults are
discovered late. This will provide us insight into the
potential root cause areas and provide guidance for
solutions.

Model-based engineering is considered to be a key to
improving system engineering and embedded software
system engineering. Modeling, analysis and simulation
has been practiced by engineers for a number of years.
For example, computer hardware models have been
created in Very High Speed Integrated Circuits Hardware
Description Language (VHDL) [2] and validated through
model checking [3]. Control engineers have used
modeling languages such as Simulink for years to
represent the physical characteristics of the system to be
controlled and the behavior of the control system.

Characteristics of physical system components, such as
thermal properties, fluid dynamics, and mechanics, have
been modeled and simulated. Even for software
systems application models have been created by
modeling languages with limited formalism, such as
Unified Modeling Language (UML), and more formal
analytical models have become the basis for resource
and timing analysis, fault impact and reliability analysis,
safety-criticality, and security analysis. Despite these
modeling efforts system-level problems remain late into
the development life cycle due to inconsistency between
the analytical models and with respect to the evolving
system being modeled (Figure 2).

Figure 2: Inconsistent Analysis Truth

We will first examine different types of system-level
failures that have occurred in actual systems and are
related to embedded software. Next, we identify root
cause areas for these system-level faults and suggest
SAE AADL [4] as a notation to capture the relevant
semantics in an architecture model. Finally, we discuss
an architecture-centric approach to validation of
embedded software systems that shows promise and is
embraced by the Aerospace industry.

SYSTEM-LEVEL FAILURES

Why do system-level failures still occur despite the
deployment of fault-tolerance techniques in systems?
System engineering approaches in the form of hazard
analysis consider the system in its operational
environment to address safety-criticality concerns of key
capabilities. Similarly, fault tolerance approaches such as
hardware redundancy for managing hardware failures
are well established in both system engineering and
computer hardware engineering.

There may still be mismatched assumptions made
between different members of an engineering team. For
example, the control engineer may make assumptions
about characteristics of physical components, such as
lag, when designing their control algorithm. A system
engineer may make assumptions about heat dissipation
of the computer board designed by the computer
engineer. These assumptions must be documented and
validated throughout the life cycle. Software engineers
and application developers are often not involved until
later in the life cycle to implement the desired
functionality. Especially in embedded systems, decisions
made for the runtime architecture and its implementation

can have strong impact on the system operation as they
may violate assumptions made by system and control
engineers. Therefore, it becomes imperative to
understand this impact earlier in the life cycle by
identifying assumption mismatches.

Figure 3: Mismatched Assumptions

Figure 3 illustrates different dimensions of mismatched
assumptions. For example, a hardware engineer may
upgrade a processor to accommodate increased
processor demand by the application. This may result in
a change in weight, electrical power consumption, and
heat dissipation. A control engineer designs a control
algorithm for an autopilot under the assumption that it is
used on a larger plane with a lag in physical
responsiveness and chooses a processing rate
accordingly. Deployment of this autopilot in an aircraft
with different response characteristics may result in
uncontrolled flight behavior. Maintenance operations
must be included in the safety cases to be validated as
was illustrated by the Maglev accident between a train
and a track maintenance vehicle [5].

An example of mismatched assumptions in the
translation of functionality into application software is the
explosion of the Ariane 5 rocket during her maiden flight.
The destruction was triggered by the overflow of a 16-bit
signed integer variable due to Arrina 5’s greater
acceleration in a reused Ariane 4 software component to
perform a function that was “not required for Ariane 5”
[6]. The reason for the overflow was the representation
of a vertical velocity value as a 16-bit integer—placing a
restriction on the maximum value. Ariane 5 flight path
caused the value to overflow. This fault was not caught
because the handler was disabled due to efficiency
considerations and cascaded into a total system failure.

A mismatch in measurement units between gallons and
liters in the fueling process of aircraft lead to an
emergency landing [7]. This occurred during the time
Canada was converting to the metric system. The aircraft
fuel management system of this aircraft was already
operating in kilograms (kg) instead of pounds (lbs).
When a fault in the dual redundant fuel quantity indicator
system occurred, which resulted in a blank display of fuel
gauges, the pilot had to perform manual conversion, but
used the conversion factor from liter to lbs instead of kg,
before entering the data into the system.

After years of development, F/A-22 flight tests began in
late 1997, but the aircraft still experienced serious
avionics instability problems as late as 2003. According
to testimony from the U.S. General Accounting Office
(GAO), “The Air Force told us avionics have failed or
shut down during numerous tests of F/A-22 aircraft due
to software problems. The shutdowns have occurred
when the pilot attempts to use the radar, communication,
navigation, identification, and electronic warfare systems
concurrently.” [8]

When laptops with dual core processor came out ITunes
crashed randomly when ripping a music CD [9]. ITunes
was designed as multi-threaded application, with one
thread determining the dB level of tracks, while the
second thread converting the audio. A single processor
system executed first one task, then the second task. On
a dual core processor, the two concurrently executing
threads were attempting to update the same music
catalogue without explicit synchronization. In other
words, the original implementation had a mutual
exclusion requirement that was not implemented,
assuming sequential execution of tasks.

Mutual exclusion is often implemented by locking data
structures as critical regions. If a fixed-priority pre-
emptive scheduling protocol, e.g., Rate-Monotonic
Scheduler (RMS), is used this can lead to unbounded
priority inversion. The Mars Pathfinder had a classic
case of priority inversion [10]. Once recognized, the
priority ceiling protocol (PCP) [11] was enabled on the
locking semaphore and the problem resolved. This
illustrates the value of formal analysis, which could have
been performed on this system well before its launch.
However, PCP implementations make the assumption, in
that it assumes that tasks are scheduled by a single
processor. If we migrate an application synchronized with
PCP to a dual-core processor, the original protocol will
not guarantee mutual exclusion – a distributed priority
ceiling protocol (DPCP) must be used instead.

When system components become virtualized
assumptions about physical redundancy will be violated.
In 1986, the Internet, then ARPA-net, was accidentally
split into two networks [12]. All seven trunk lines to New
England, which used to be separate physical lines, were
severed when AT&T suffered a fiber optic cable break,
which lasted 11 hours. When AT&T had gone fiber optic,
these physically redundant trunk lines became logical
trunk lines on this much higher bandwidth connection,
losing all physical redundancy. The same occurs, when
you replace your primary and backup 100GB hard-drives
in your desktop with a 500GB drive and configure it with
a primary and a backup partition. Your backup software
will operate, but your backup copy is lost on a hard-drive
crash.

The ARINC 653 standard [13] uses virtual machines for
time and space partitioning to isolate application
subsystems from affecting each other due failures.
Commercial real-time operating systems (RTOSs)

support ARINC 653 and it are used in avionics systems.
Assumptions made by application software, when
running on dedicated hardware, do not always behave
the same when the same software operates in such a
virtual machine. For example, in an early test in the lab
the implementation of a partitioned architecture based on
ARINC 653 for an aircraft executed at 2/3 speed. Upon
closer inspection, unanticipated resource contention was
identified as the culprit. One application partition initiated
a Direct Memory Access (DMA) transfer just before its
timeslot was over. Another partition was scheduled, but
the DMA transfer of the original partition continued. The
DMA transfer utilized a bus that was also used by the
operating system to swap the cache content of the
processor when switching between partitions, thus,
slowing the partition switch. In addition, the DMA transfer
accessed a memory bank that also contained the
application code of the second partition, causing slow
instruction fetches.

Partitions introduce virtualization of time, while the
application code may assume actual processor time. For
example, control system application periodically samples
a data stream at the beginning of each frame, when
executing on a dedicated processor with a static
scheduling scheme. However, when executing in a
partition, the same application code samples the data
stream at the beginning of the partition timeslot, which
may be offset from the frame.

In the 1990’s the flight software for a fighter was
migrated to an Integrated Modular Avionics (IMA)
architecture. The application software was originally
implemented as a cyclic executive with periodic sampling
tasks. When ported to a RMS, the display showing
tracked objects randomly blurred. The transfer of target
data from the sensor to the display, which predictably
took four frames in the original system, now varied
between four and eight frames due to pre-emption and
depending on the workload. This showed itself as an
oscillating target symbol of the tracked object [14].

When such data is sampled by a control algorithm, this
sampling jitter can results in instability of the controller
[14]. In other words, the time-sensitivity of the data
stream is affected by a change in the scheduling protocol
and the use of a non-deterministic communication
scheme (sampling of shared variables). This manifests
itself to the control system as noisier sensor data, which
must be compensated for with more complex algorithms
and calibration.

In the late 1990’s an attempt at a well-intentioned
performance improvement of ground station software
that tracks objects close to a space craft had unplanned
side effects. The subsystem collecting the tracking
information had originally sent a complete map of
tracked objects to the command and control subsystem.
In order to reduce the load on the network, a change was
made to communicate only changes to the map.
Unfortunately, this communication occurred over a

network protocol that drops packets under overload
conditions. As result, during integration testing, it was
discovered that state changes randomly were not
delivered. In other words, the data representation of the
communicated data stream assumed guaranteed
delivery.

In 2008, a Qantas flight unexpectedly dropped up to 650
feet multiple times within a few minutes [16]. A fault in
one of three Air Data Inertial Reference Units (ADIRU)
caused the unit to supply incorrect data to other aircraft
systems and led to automatic disengagement of the
autopilot, false stall warnings, and loss of attitude
information on the pilot display. With the autopilot off, two
minutes later the primary flight control computer still
received false data from the ADIRU and commanded a
major pitch down. A failure in one component of a triple
redundant unit caused an operational mode change and
operational response to a data stream by another
subsystem without recognizing its faulty nature, i.e.,
assuming a correct data stream due to the redundant
nature of the source.

In the next section we will summarize root cause areas
that contribute to these system-level failures and
introduce AADL as a notation to capture relevant aspects
of systems to address these root cause areas.

ANALYSIS OF ROOT CAUSES

System-level faults identified in the previous section fall
into several root cause areas and typically are related to
undocumented assumptions that are not validated as a
system evolves throughout the life cycle.

One root cause area is the flow of information through
the system. As multiple components are involved in its
handling, all can affect its characteristics and can be
affected by such changes. Therefore, it is essential to
document assumptions made about such data streams.
These assumptions fall into several categories:

• Assumptions about the data of a data stream: this
includes the application data type, e.g., temperature,
representation of state or state change, its base type
representation, e.g., 16 bit unsigned integer,
acceptable range of values, base value that is
represented as zero, e.g., -50, and measurement
unit, e.g., Celsius.

• Assumptions about the timing of the data stream:
age of the data, e.g., time since it was read by a
sensor, data latency, i.e., handling time of new data,
and latency jitter, i.e., variation in latency.
Contributors to age, latency, and latency jitter of data
streams, both in terms of application logic and
computer platform.

• Assumptions about the stream characteristics: data
stream completeness and acceptable miss rates,
acceptable limits in value changes between
elements of the data stream.

A second root cause area deals with performance
impact. In integrated modular avionics (IMA)
architectures the computer resources as well as physical
resources are shared and concurrent use can lead to
resource contention. Therefore, assumptions about
availability of resources and resource guarantees must
be documented. These assumptions fall into several
categories:

• Undocumented resource sharing: record of all users
of a resource - direct and indirect, logical and
physical; accountability for peek demands;
assurance of mutually exclusive use requirement.

• Impedance mismatch of resource demand and
capacity: demand may exceed capacity, or capacity
of one resource may exceed capacity of connected
resource. For example, a high bandwidth Gigabit
Ethernet network can flood low-powered processors
resulting in denial of service and lower than expected
processor speed.

• Unmanaged hardware resources: individual high
demand component may dominate an unmanaged
resource, e.g., high-volume traffic by one transfer
can cause delay and denial of transmission service
on an unscheduled network. Enforcement of
resource budget limits is essential to safety criticality.

A third root cause area is virtualization of processor,
network, and memory resources. Such virtual resources
that represent logical resource capability and capacity
that can be allocated to physical resources in different
configurations. System architectures utilize these virtual
resources and assume certain guarantees.

• Resource isolation guarantees: In addition to logical
resources, limit enforcement virtual resource
concepts of processor partitioning (ARINC 653) and
virtual channels represent information access and
flow boundaries. Enforcement of such assumed
isolation regions must be validated in the context of
time-shared resources.

• Virtualization and redundancy: Virtualization turns
physical redundancy into logical redundancy.
Deployment allocations must be taken into account
to ensure assumed reliability and availability.

• Virtualization of time: virtualization of computer
platform processing time, and of time servers.
Tasks and partitions virtualize the time of application
code execution. Time-sensitive application
interactions are affected by time synchronization
across computer platform components, i.e., its
operation in a synchronous system (operating with
one clock) or as globally asynchronous system.
Applications processing time-sensitive data, e.g.,
environmental observations for a common
operational picture (COP) use time stamping. A
common time reference is assumed when data is
fused despite multiple time sources.

• Virtualization and mixed-criticality applications: Mixed
criticality applications such as periodic & event driven
processing, scheduling priorities vs. load scheduling
priorities, multiple security layers, safety-criticality
levels, and redundancy requirements, must utilize
virtualization consistently despite conflicting
demands.

A fourth root cause areas is distributed and replicated
state-based systems, such as discrete application logic,
hand-shaking protocols, operational modes, and
reconfiguration of operational systems. Assumptions
made when validating such concurrent and stochastic
state machines in a synchronous system setting without
failure may not hold.

• Coordination of state machines: Communication of
state vs. state transition events responds differently
to protocol message loss.

• Event observations: Sampling of state to observe
events is a common technique in periodically
operating applications that assumes no event loss. It
may have race conditions under concurrency,
asynchronous clock, and faulty communication
conditions. This may result in event observation loss
and protocol lockup. Validation requires not just
temporal ordering assumptions, but needs to
address temporarily inconsistent time intervals.

The SAE AADL standard [4] is an architecture modeling
language for embedded systems to capture the
architecture of the computer platform, the architecture of
the operational application, and the architecture of the
physical system and their interactions. An AADL model
may be used during a broad range of life-cycle activities,
e.g. for documentation during preliminary specification,
for schedulability or reliability analysis during design
studies and during verification, for generation of system
integration code during implementation.

AADL provides a set of concepts with well-defined
semantics to represent a system as a component-based
model. These allow us to capture relevant aspects of the
embedded system in order to address these root cause
areas analytically. AADL has

• threads, whose semantics are defined by hybrid
automata in the standard, to represent concurrent
tasks;

• processes to represent protected address spaces
(space partitions);

• sampling and queued port connections with timing
specifications, including deterministic sampling
requirements to minimize jitter;

• virtual processors and virtual buses to represent
partitions, hierarchical schedulers, protocols, and
virtual channels;

• processors, buses, memory, and devices to
represent hardware and physical system
architectures;

• allocation bindings of software to hardware to
represent deployment decisions;

• abstract specification of flows through components
and end-to-end flows to support flow-related
analyses;

• partial model specifications and their refinement to
support evolution of models at multiple levels of
granularity and architectural patterns;

• packages to organize models into manageable units
that can be developed and analyzed independently
by different team members and suppliers; and

• an extensible set of properties to annotate model
elements with information relevant to different
analyses with many properties already defined with
the base standard and others standardized through
annex documents.

In the next section, we will discuss how AADL is a driving
force behind an architecture-centric approach to model-
based analysis and construction of embedded systems.

ARCHITECTURE-CENTRIC SYSTEM
VALIDATION

AADL supports the concept of an architecture model that
is annotated with information relevant for analysis and
validation of different operational quality dimensions. As
such, it is the single source for analytical models of the
same system. Their auto-generation ensures model
consistency and single ”truth” of the analysis results
(Figure 4). In addition, this single source approach
facilitates automatic propagation of system architecture
changes, such as the replacement of a processor
component by a higher capacity one, into different
analytical models, each addressing a separate quality
aspect, e.g., the reconfigured processor is reflected in
budget and scheduling analysis, as well as weight, and
power consumption analysis.

Figure 4: Single Source Annotated Architecture Model

AADL allows systems to be modeled at different levels of
granularity and different levels of fidelity. Early in the

process, we may have a model of the system in terms of
major subsystems. We can associate resource budgets
and resource capacities and perform budget analysis. In
that context we can take into account, any deployment
decisions of subsystems to hardware early in the system
life cycle. On the same system model, we can perform
initial end-to-end latency analysis based on the fact that
different subsystems may be deployed as separate
partitions in a partitioned architecture. In other words, the
latency analysis not only takes into account processing
and sampling latency from the control engineer
perspective, but also considers latency and jitter
contributions due to the software implementation and the
computer hardware [20]. Early in the life cycle, we are
able to detect, that migration to a partitioned architecture
may increase latency of critical flows.

Once the subsystems are refined to the task level we
can revisit the budget analysis, the latency analysis, and
perform resource allocation and scheduling analysis. In
other words, we can create initial models with limited
effort and perform low fidelity quantitative analysis on a
system. We then refine the model and the information
we annotate the model with at incremental cost.

Figure 5: Detailed Hardware Architecture

The computer architecture is represented in AADL in
terms of processors, memory, and switches (buses), a
notation introduced as Processor Memory Switch (PMS)
in [18], and supports relevant architectural detail to
explore resource contention issues (Figure 5) [19]. When
combined with allocation of tasks to processors, code
and data to memory, and connections to buses, the
resource demand in form of workload can be derived
from the application properties.

Safety-criticality is supported by AADL in a number of
ways. First, AADL is strongly typed. For example, A
processor specification indicates that it requires access
to a Peripheral Component Interconnect (PCI) bus and
an Ethernet, then only a PCI bus can get connected to
the one bus access feature. Second, the protected
address space enforcement of processes and resource
allocation enforcement of virtual processors ensure time
and space partitioning. Third, a safety level property on
system components, initially used for major subsystems
and later attached to more detailed components, is used
to ensure that components with high safety criticality are
not controlled by or receive critical input from low
criticality components. Fourth, AADL has a built-in fault-
handling model for application threads and extends into

an explicit representation of a health monitoring
architecture, and fault management by reconfiguration,
which is modeled through AADL modes. Fifth, AADL
support fault modeling through the Error Model Annex
standard [17], which allows us to introduce intrinsic
faults, error state machines, and fault propagations
across components – including stochastic properties
such as probability of fault occurrence. These
annotations to the architecture support hazard and fault
impact analysis as well as reliability and availability
analysis. Finally, the dynamic behavior of the architecture
is represented by modes and further refined through the
Behavior Annex standard [22]. This allows us to apply
formal methods such as model checking to validate
system behavior, as was done for the mode logic of a
dual redundant flight guidance system (shown in Figure
6) [21].

Figure 6: Dual Flight Guidance System

The architecture model can be further refined by
associating detailed design models with individual
components, such as Modelica models for physical
components, VHDL models for hardware components,
and Simulink or Scade models and Java source code for
software components. This allows us to validate the
detailed design against the architectural specification of
components and their interfaces. Figure 7 illustrates this
collaborative approach to engineering systems.

Figure 7: Co-Engineering of Systems

At the architecture level, it is desirable to combine AADL
with the System Modeling Language (SysML) for
collaborative engineering by system architects and
embedded system architects. The focus of SysML is to
represent the requirements, structure, behavior, and
parametrics [23], in addressing multiple aspects of a
system. The two standards working groups have started
to collaborate in an alignment of the two notations.

CONCLUSION

In this paper, we have made the case that the embedded
software system has become a major contributor to
system-level faults in to today’s systems. A range of
system-level failures has been illustrated. The ability to
represent embedded software systems in terms of
concepts whose semantics are well defined, is key to
understanding the root causes of such system-level
faults and analyzing system models to validate its safety
criticality requirements. We have shown that AADL is
able to play this role and act as the single source
architecture representation for analytical models.

The benefits of this model-based engineering approach
with focus on the system architecture include:

• Reduced risk through analysis early and throughout
the life cycle, understanding of system-wide impact
of changes, and validation of assumption across the
system architecture;

• Increased confidence through model validation to
complement integration testing, validation of
assumption made by models against the
implementation, and analysis of evolving model into
higher fidelity;

• Reduced cost through fewer system integration
problems, and fewer validation steps through the use
of a single source model repository and generation
of analytical models as well as implementation code.

Recognizing the challenges of embedded software
systems and the potential value of this architecture-
centric approach, the Aerospace Vehicle Systems
Institute (AVSI), a cooperative of aerospace companies,
government organizations, and academic institutions,
has launched an international, industry-wide program
called System Architecture Virtual Integration (SAVI).
Major players of the SAVI project include Boeing, Airbus,
Lockheed Martin, British Aerospace Engineering (BAE)
Systems, Rockwell Collins, General Electric (GE)
Aviation, Federal Aviation Administration (FAA),
Department of Defense (DoD), Software Engineering
Institute (SEI), Honeywell, Goodrich, Hamilton
Sundstrand, and National Aeronautics and Space
Administration (NASA).

REFERENCES

1. NIST Planning report 02-3, “The Economic Impacts
of Inadequate Infrastructure for Software Testing”,
May 2002.

2. VHSIC (Very High Speed Integrated Circuits)
hardware description language
en.wikipedia.org/wiki/VHDL.

3. Model checking hardware
en.wikipedia.org/wiki/Model_checking.

4. SAE International. “Architecture Analysis & Design
Language (AADL) Standard.”, AS 5506A, November
2004. Revised Jan 2009.

5. “2006 Lathen maglev train accident”,
http://en.wikipedia.org/wiki/2006_Lathen_maglev_trai
n_accident.

6. “Ariane 5 Flight 501.”,
en.wikipedia.org/wiki/Ariane_5_Flight_501.

7. “Air Canada Flight 143.”,
en.wikipedia.org/wiki/Gimli_Glider.

8. Allen Li. Testimony by Allen Li, Director, Acquisition
and Sourcing Management, U.S. General
Accounting Office, to the House Subcommittee on
Tactical Air and Land Forces, Committee on Armed
Services, April 2003.
www.gao.gov/new.items/d03603t.pdf.

9. ITunes Crashes on Dual-core Processors.
discussions.apple.com/thread.jspa?messageID=123
5236&.

10. M. Jones, “What Really Happened on Mars”,
http://research.microsoft.com/en-
us/um/people/mbj/Mars_Pathfinder/.

11. Lui Sha, R. Rajkumar, and John P. Lehoczky
(September 1990). "Priority Inheritance Protocols: An
Approach to Real-Time Synchronization". IEEE
Transactions on Computers 39 (9): 1175–1185.

12. “History of the Internet.”,
www.thocp.net/reference/internet/internet2.htm.

13. Avionics Application Software Standard Interface.
“ARINC 653 Standard Document.” www.arinc.com.

14. Feiler P., “Upgrading Avionics Systems: A Case
Study”, DARPA EDCS Project Report, June 1998.

15. Cervin, A.; Årzén, K.-E.; & Henriksson, D. “Control
Loop Timing Analysis Using TrueTime and
Jitterbug,” 1194−1199. Proceedings of the 2006
IEEE Conference on Computer Aided Control
Systems Design (CACSD). Munich, Germany,
October 4−6, 2006.

16. “Qantas Flight 72.”,
en.wikipedia.org/wiki/Qantas_Flight_72.

17. SAE International, “Architecture Analysis & Design
Language (AADL) Annex Volume 1: Error Model
Annex"; SAE Document AS-5506/1, 2006 June.

18. C. Bell, A. Newell, “Computer Architectures:
Readings and Examples”, McGraw-Hill, 1971.

19. Min-Young Nam, R. Pellizzoni, Lui Sha, “ ASIIST:
Application Specific I/O Integration Support Tool for
Real-Time Bus Architecture”, 14th IEEE International
Conference on Engineering of Complex Computer
Systems, 2009.

20. Peter H. Feiler, Jörgen Hansson, “Impact of Runtime
Architectures on Control System Stability”,
Proceedings of 4th International Congress on
Embedded Real-Time Systems, Jan 2008.

21. de Niz, D. and Feiler, P. H., “Verification of
Replication Architectures in AADL”. 4th IEEE
International Workshop UML and AADL,
Proceedings 14th International International

Conference on Engineering of Complex Computer

Systems (ICECCS 2009).

22. Fanca, R.B., et al. “The AADL Behavioral Annex -
Experiments and Roadmap”. Proceedings of 12th
IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS07),
UML&AADL Workshop, July 2007.

23. Systems Modeling Language (SysML).
www.sysml.org.

CONTACT

Peter H. Feiler, Software Engineering Institute, Carnegie
Mellon University. phf@sei.cmu.edu. Technical Lead of
SAE AADL standard.

“NO WARRANTY: THIS CARNEGIE MELLON
UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS"
BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY,
OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.
Use of any trademarks in this presentation is not
intended in any way to infringe on the rights of the
trademark holder.”

DEFINITIONS, ACRONYMS, ABBREVIATIONS

AADL: Architecture Analysis & Design Language

ADIRU: Air Data Inertial Reference Units.

AVSI: Aerospace Vehicle Systems Institute.

BAE: British Aerospace Engineering.

COP: Common Operational Picture.

DMA: Direct Memory Access.

DoD: Department of Defense.

DPCP: Distributed PCP.

FAA: Federal Aviation Administration.

GAO: General Accounting Office.

GE: General Electric.

IMA: Integrated Modular Avionics.

MMC: Modular Mission Computer.

NASA: National Aeronautics and Space Administration.

NIST: National Institute of Standards and Technology.

PCI: Peripheral Component Interconnect.

PCP: Priority Ceiling Protocol.

PMS: Processor Memory Switch.

RMS: Rate-Monotonic Scheduler.

RTOS: Real-Time Operating System.

SAVI: System Architecture Virtual Integration.

SEI: Software Engineering Institute.

SysML: System Modeling Language.

UML: Unified Modeling Language.

VHDL: VHSIC (Very High Speed Integrated Circuits)
Hardware Description Language.

