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ABSTRACT 

The embedded software has played an increasing role in 
safety-critical systems. At the same time the current 
development process of “build, then integrate” has 
proven unaffordable for the Aerospace industry.  This 
paper outlines challenges in safety-critical embedded 
systems in addressing system-level faults that are 
currently discovered late in the development life cycle.  
We then discuss an architecture-centric approach to 
model-based engineering, i.e., to complement the 
validation of systems with analysis of different 
operational quality aspects from an architecture model. A 
key technology in this approach is the Architecture 
Analysis & Design Language (AADL), an SAE 
International standard for embedded software system. It 
supports analysis of operational qualities such as 
responsiveness, safety-criticality, security, and reliability 
through model annotations.   A number of industry 
initiatives have been underway to demonstrate the 
feasibility of using this technology in industrial practice. 

INTRODUCTION 

Embedded software systems have become a key 
component of systems, both in terms of contribution to 
the safety-criticality of the system and in terms of cost. 
For example, in the Aerospace industry the size of the 
onboard software has doubled every four years and has 
reached over 20M sources lines. Unfortunately, current 
software development processes of build, integrate and 
test are reaching their limit of affordability, as the cost of 
repair has grown. A 2002 National Institute of Standards 
and Technology (NIST) study [1] shows that 70% of 
faults to be introduced early in the life cycle, while 80% of 
them are not caught until integration test or later with a 
repair cost of 10x or higher. Figure 1 shows percentages 

or fault introduction, discovery, and cost factor. If we can 
discover a portion of those faults earlier in the life cycle, 
we have the potential of leveraged cost savings.  

 

Figure 1: Benefits of Early Fault Discovery 

In this paper, we examine the faults that persist late into 
the development life cycle.  In particular, we ask why it is 
the case that, despite that fact that these systems have 
been designed with fault tolerance and safety-criticality in 
mind, a high percentage of system-level faults are 
discovered late. This will provide us insight into the 
potential root cause areas and provide guidance for 
solutions. 

Model-based engineering is considered to be a key to 
improving system engineering and embedded software 
system engineering.  Modeling, analysis and simulation 
has been practiced by engineers for a number of years. 
For example, computer hardware models have been 
created in Very High Speed Integrated Circuits Hardware 
Description Language (VHDL) [2] and validated through 
model checking [3]. Control engineers have used 
modeling languages such as Simulink for years to 
represent the physical characteristics of the system to be 
controlled and the behavior of the control system. 



 

Characteristics of physical system components, such as 
thermal properties, fluid dynamics, and mechanics, have 
been modeled and simulated.  Even for software 
systems application models have been created by 
modeling languages with limited formalism, such as 
Unified Modeling Language (UML), and more formal 
analytical models have become the basis for resource 
and timing analysis, fault impact and reliability analysis, 
safety-criticality, and security analysis. Despite these 
modeling efforts system-level problems remain late into 
the development life cycle due to inconsistency between 
the analytical models and with respect to the evolving 
system being modeled (Figure 2).  

 

Figure 2: Inconsistent Analysis Truth 

We will first examine different types of system-level 
failures that have occurred in actual systems and are 
related to embedded software. Next, we identify root 
cause areas for these system-level faults and suggest 
SAE AADL [4] as a notation to capture the relevant 
semantics in an architecture model. Finally, we discuss 
an architecture-centric approach to validation of 
embedded software systems that shows promise and is 
embraced by the Aerospace industry. 

SYSTEM-LEVEL FAILURES 

Why do system-level failures still occur despite the 
deployment of fault-tolerance techniques in systems? 
System engineering approaches in the form of hazard 
analysis consider the system in its operational 
environment to address safety-criticality concerns of key 
capabilities. Similarly, fault tolerance approaches such as 
hardware redundancy for managing hardware failures 
are well established in both system engineering and 
computer hardware engineering.  

There may still be mismatched assumptions made 
between different members of an engineering team. For 
example, the control engineer may make assumptions 
about characteristics of physical components, such as 
lag, when designing their control algorithm. A system 
engineer may make assumptions about heat dissipation 
of the computer board designed by the computer 
engineer. These assumptions must be documented and 
validated throughout the life cycle. Software engineers 
and application developers are often not involved until 
later in the life cycle to implement the desired 
functionality.  Especially in embedded systems, decisions 
made for the runtime architecture and its implementation 

can have strong impact on the system operation as they 
may violate assumptions made by system and control 
engineers.  Therefore, it becomes imperative to 
understand this impact earlier in the life cycle by 
identifying assumption mismatches.  

 

Figure 3: Mismatched Assumptions 

Figure 3 illustrates different dimensions of mismatched 
assumptions. For example, a hardware engineer may 
upgrade a processor to accommodate increased 
processor demand by the application. This may result in 
a change in weight, electrical power consumption, and 
heat dissipation. A control engineer designs a control 
algorithm for an autopilot under the assumption that it is 
used on a larger plane with a lag in physical 
responsiveness and chooses a processing rate 
accordingly. Deployment of this autopilot in an aircraft 
with different response characteristics may result in 
uncontrolled flight behavior. Maintenance operations 
must be included in the safety cases to be validated as 
was illustrated by the Maglev accident between a train 
and a track maintenance vehicle [5]. 

An example of mismatched assumptions in the 
translation of functionality into application software is the 
explosion of the Ariane 5 rocket during her maiden flight. 
The destruction was triggered by the overflow of a 16-bit 
signed integer variable due to Arrina 5’s greater 
acceleration in a reused Ariane 4 software component to 
perform a function that was “not required for Ariane 5” 
[6]. The reason for the overflow was the representation 
of a vertical velocity value as a 16-bit integer—placing a 
restriction on the maximum value.  Ariane 5 flight path 
caused the value to overflow. This fault was not caught 
because the handler was disabled due to efficiency 
considerations and cascaded into a total system failure.  

A mismatch in measurement units between gallons and 
liters in the fueling process of aircraft lead to an 
emergency landing [7]. This occurred during the time 
Canada was converting to the metric system. The aircraft 
fuel management system of this aircraft was already 
operating in kilograms (kg) instead of pounds (lbs). 
When a fault in the dual redundant fuel quantity indicator 
system occurred, which resulted in a blank display of fuel 
gauges, the pilot had to perform manual conversion, but 
used the conversion factor from liter to lbs instead of kg, 
before entering the data into the system.   



 

After years of development, F/A-22 flight tests began in 
late 1997, but the aircraft still experienced serious 
avionics instability problems as late as 2003. According 
to testimony from the U.S. General Accounting Office 
(GAO), “The Air Force told us avionics have failed or 
shut down during numerous tests of F/A-22 aircraft due 
to software problems. The shutdowns have occurred 
when the pilot attempts to use the radar, communication, 
navigation, identification, and electronic warfare systems 
concurrently.” [8]  

When laptops with dual core processor came out ITunes 
crashed randomly when ripping a music CD [9].  ITunes 
was designed as multi-threaded application, with one 
thread determining the dB level of tracks, while the 
second thread converting the audio. A single processor 
system executed first one task, then the second task. On 
a dual core processor, the two concurrently executing 
threads were attempting to update the same music 
catalogue without explicit synchronization. In other 
words, the original implementation had a mutual 
exclusion requirement that was not implemented, 
assuming sequential execution of tasks. 

Mutual exclusion is often implemented by locking data 
structures as critical regions. If a fixed-priority pre-
emptive scheduling protocol, e.g., Rate-Monotonic 
Scheduler (RMS), is used this can lead to unbounded 
priority inversion. The Mars Pathfinder had a classic 
case of priority inversion [10]. Once recognized, the 
priority ceiling protocol (PCP) [11] was enabled on the 
locking semaphore and the problem resolved. This 
illustrates the value of formal analysis, which could have 
been performed on this system well before its launch.  
However, PCP implementations make the assumption, in 
that it assumes that tasks are scheduled by a single 
processor. If we migrate an application synchronized with 
PCP to a dual-core processor, the original protocol will 
not guarantee mutual exclusion – a distributed priority 
ceiling protocol (DPCP) must be used instead.  

When system components become virtualized 
assumptions about physical redundancy will be violated.  
In 1986, the Internet, then ARPA-net, was accidentally 
split into two networks [12]. All seven trunk lines to New 
England, which used to be separate physical lines, were 
severed when AT&T suffered a fiber optic cable break, 
which lasted 11 hours. When AT&T had gone fiber optic, 
these physically redundant trunk lines became logical 
trunk lines on this much higher bandwidth connection, 
losing all physical redundancy.  The same occurs, when 
you replace your primary and backup 100GB hard-drives 
in your desktop with a 500GB drive and configure it with 
a primary and a backup partition. Your backup software 
will operate, but your backup copy is lost on a hard-drive 
crash. 

The ARINC 653 standard [13] uses virtual machines for 
time and space partitioning to isolate application 
subsystems from affecting each other due failures. 
Commercial real-time operating systems (RTOSs) 

support ARINC 653 and it are used in avionics systems. 
Assumptions made by application software, when 
running on dedicated hardware, do not always behave 
the same when the same software operates in such a 
virtual machine. For example, in an early test in the lab 
the implementation of a partitioned architecture based on 
ARINC 653 for an aircraft executed at 2/3 speed. Upon 
closer inspection, unanticipated resource contention was 
identified as the culprit. One application partition initiated 
a Direct Memory Access (DMA) transfer just before its 
timeslot was over. Another partition was scheduled, but 
the DMA transfer of the original partition continued. The 
DMA transfer utilized a bus that was also used by the 
operating system to swap the cache content of the 
processor when switching between partitions, thus, 
slowing the partition switch. In addition, the DMA transfer 
accessed a memory bank that also contained the 
application code of the second partition, causing slow 
instruction fetches.   

Partitions introduce virtualization of time, while the 
application code may assume actual processor time. For 
example, control system application periodically samples 
a data stream at the beginning of each frame, when 
executing on a dedicated processor with a static 
scheduling scheme. However, when executing in a 
partition, the same application code samples the data 
stream at the beginning of the partition timeslot, which 
may be offset from the frame.  

In the 1990’s the flight software for a fighter was 
migrated to an Integrated Modular Avionics (IMA) 
architecture. The application software was originally 
implemented as a cyclic executive with periodic sampling 
tasks. When ported to a RMS, the display showing 
tracked objects randomly  blurred.  The transfer of target 
data from the sensor to the display, which predictably 
took four frames in the original system, now varied 
between four and eight frames due to pre-emption and 
depending on the workload. This showed itself as an 
oscillating target symbol of the tracked object [14].  

When such data is sampled by a control algorithm, this 
sampling jitter can results in instability of the controller 
[14]. In other words, the time-sensitivity of the data 
stream is affected by a change in the scheduling protocol 
and the use of a non-deterministic communication 
scheme (sampling of shared variables). This manifests 
itself to the control system as noisier sensor data, which 
must be compensated for with more complex algorithms 
and calibration. 

In the late 1990’s an attempt at a well-intentioned 
performance improvement of ground station software 
that tracks objects close to a space craft had unplanned 
side effects. The subsystem collecting the tracking 
information had originally sent a complete map of 
tracked objects to the command and control subsystem. 
In order to reduce the load on the network, a change was 
made to communicate only changes to the map. 
Unfortunately, this communication occurred over a 



 

network protocol that drops packets under overload 
conditions. As result, during integration testing, it was 
discovered that state changes randomly were not 
delivered. In other words, the data representation of the 
communicated data stream assumed guaranteed 
delivery. 

In 2008, a Qantas flight unexpectedly dropped up to 650 
feet multiple times within a few minutes [16]. A fault in 
one of three Air Data Inertial Reference Units (ADIRU) 
caused the unit to supply incorrect data to other aircraft 
systems and led to automatic disengagement of the 
autopilot, false stall warnings, and loss of attitude 
information on the pilot display. With the autopilot off, two 
minutes later the primary flight control computer still 
received false data from the ADIRU and commanded a 
major pitch down. A failure in one component of a triple 
redundant unit caused an operational mode change and 
operational response to a data stream by another 
subsystem without recognizing its faulty nature, i.e., 
assuming a correct data stream due to the redundant 
nature of the source.  

In the next section we will summarize root cause areas 
that contribute to these system-level failures and 
introduce AADL as a notation to capture relevant aspects 
of systems to address these root cause areas.   

ANALYSIS OF ROOT CAUSES 

System-level faults identified in the previous section fall 
into several root cause areas and typically are related to 
undocumented assumptions that are not validated as a 
system evolves throughout the life cycle. 

One root cause area is the flow of information through 
the system. As multiple components are involved in its 
handling, all can affect its characteristics and can be 
affected by such changes. Therefore, it is essential to 
document assumptions made about such data streams. 
These assumptions fall into several categories: 

• Assumptions about the data of a data stream: this 
includes the application data type, e.g., temperature, 
representation of state or state change, its base type 
representation, e.g., 16 bit unsigned integer, 
acceptable range of values, base value that is 
represented as zero, e.g., -50, and measurement 
unit, e.g., Celsius.  

• Assumptions about the timing of the data stream: 
age of the data, e.g., time since it was read by a 
sensor, data latency, i.e., handling time of new data, 
and latency jitter, i.e., variation in latency. 
Contributors to age, latency, and latency jitter of data 
streams, both in terms of application logic and 
computer platform.  

• Assumptions about the stream characteristics: data 
stream completeness and acceptable miss rates, 
acceptable limits in value changes between 
elements of the data stream.  

A second root cause area deals with performance 
impact. In integrated modular avionics (IMA) 
architectures the computer resources as well as physical 
resources are shared and concurrent use can lead to 
resource contention. Therefore, assumptions about 
availability of resources and resource guarantees must 
be documented. These assumptions fall into several 
categories: 

• Undocumented resource sharing: record of all users 
of a resource - direct and indirect, logical and 
physical; accountability for peek demands; 
assurance of mutually exclusive use requirement.  

• Impedance mismatch of resource demand and 
capacity: demand may exceed capacity, or capacity 
of one resource may exceed capacity of connected 
resource. For example, a high bandwidth Gigabit 
Ethernet network can flood low-powered processors 
resulting in denial of service and lower than expected 
processor speed.  

• Unmanaged hardware resources: individual high 
demand component may dominate an unmanaged 
resource, e.g., high-volume traffic by one transfer 
can cause delay and denial of transmission service 
on an unscheduled network. Enforcement of 
resource budget limits is essential to safety criticality.  

A third root cause area is virtualization of processor, 
network, and memory resources. Such virtual resources 
that represent logical resource capability and capacity 
that can be allocated to physical resources in different 
configurations. System architectures utilize these virtual 
resources and assume certain guarantees.  

• Resource isolation guarantees: In addition to logical 
resources, limit enforcement virtual resource 
concepts of processor partitioning (ARINC 653) and 
virtual channels represent information access and 
flow boundaries. Enforcement of such assumed 
isolation regions must be validated in the context of 
time-shared resources.  

• Virtualization and redundancy: Virtualization turns 
physical redundancy into logical redundancy. 
Deployment allocations must be taken into account 
to ensure assumed reliability and availability.  

• Virtualization of time: virtualization of computer 
platform processing time, and of time servers.  
Tasks and partitions virtualize the time of application 
code execution. Time-sensitive application 
interactions are affected by time synchronization 
across computer platform components, i.e., its 
operation in a synchronous system (operating with 
one clock) or as globally asynchronous system. 
Applications processing time-sensitive data, e.g., 
environmental observations for a common 
operational picture (COP) use time stamping. A 
common time reference is assumed when data is 
fused despite multiple time sources.  



 

• Virtualization and mixed-criticality applications: Mixed 
criticality applications such as periodic & event driven 
processing, scheduling priorities vs. load scheduling 
priorities, multiple security layers, safety-criticality 
levels, and redundancy requirements, must utilize 
virtualization consistently despite conflicting 
demands.  

A fourth root cause areas is distributed and replicated 
state-based systems, such as discrete application logic, 
hand-shaking protocols, operational modes, and 
reconfiguration of operational systems. Assumptions 
made when validating such concurrent and stochastic 
state machines in a synchronous system setting without 
failure may not hold.  

• Coordination of state machines: Communication of 
state vs. state transition events responds differently 
to protocol message loss.  

• Event observations: Sampling of state to observe 
events is a common technique in periodically 
operating applications that assumes no event loss. It 
may have race conditions under concurrency, 
asynchronous clock, and faulty communication 
conditions. This may result in event observation loss 
and protocol lockup. Validation requires not just 
temporal ordering assumptions, but needs to 
address temporarily inconsistent time intervals.  

The SAE AADL standard [4] is an architecture modeling 
language for embedded systems to capture the 
architecture of the computer platform, the architecture of 
the operational application, and the architecture of the 
physical system and their interactions. An AADL model 
may be used during a broad range of life-cycle activities, 
e.g. for documentation during preliminary specification, 
for schedulability or reliability analysis during design 
studies and during verification, for generation of system 
integration code during implementation.  

AADL provides a set of concepts with well-defined 
semantics to represent a system as a component-based 
model. These allow us to capture relevant aspects of the 
embedded system in order to address these root cause 
areas analytically. AADL has  

• threads, whose semantics are defined by hybrid 
automata in the standard, to represent concurrent 
tasks;  

• processes to represent protected address spaces 
(space partitions);  

• sampling and queued port connections with timing 
specifications, including deterministic sampling 
requirements to minimize jitter;  

• virtual processors and virtual buses to represent 
partitions, hierarchical schedulers, protocols, and 
virtual channels;  

• processors, buses, memory, and devices to 
represent hardware and physical system 
architectures;  

• allocation bindings of software to hardware to 
represent deployment decisions;  

• abstract specification of flows through components 
and end-to-end flows to support flow-related 
analyses;  

• partial model specifications and their refinement to 
support evolution of models at multiple levels of 
granularity and architectural patterns;  

• packages to organize models into manageable units 
that can be developed and analyzed independently 
by different team members and suppliers; and  

• an extensible set of properties to annotate model 
elements with information relevant to different 
analyses with many properties already defined with 
the base standard and others standardized through 
annex documents.   

In the next section, we will discuss how AADL is a driving 
force behind an architecture-centric approach to model-
based analysis and construction of embedded systems.  

ARCHITECTURE-CENTRIC SYSTEM 
VALIDATION 

AADL supports the concept of an architecture model that 
is annotated with information relevant for analysis and 
validation of different operational quality dimensions. As 
such, it is the single source for analytical models of the 
same system. Their auto-generation ensures model 
consistency and single ”truth” of the analysis results 
(Figure 4). In addition, this single source approach 
facilitates automatic propagation of system architecture 
changes, such as the replacement of a processor 
component by a higher capacity one, into different 
analytical models, each addressing a separate quality 
aspect, e.g., the reconfigured processor is reflected in 
budget and scheduling analysis, as well as weight, and 
power consumption analysis. 

 

Figure 4: Single Source Annotated Architecture Model 

AADL allows systems to be modeled at different levels of 
granularity and different levels of fidelity.  Early in the 



 

process, we may have a model of the system in terms of 
major subsystems. We can associate resource budgets 
and resource capacities and perform budget analysis. In 
that context we can take into account, any deployment 
decisions of subsystems to hardware early in the system 
life cycle. On the same system model, we can perform 
initial end-to-end latency analysis based on the fact that 
different subsystems may be deployed as separate 
partitions in a partitioned architecture. In other words, the 
latency analysis not only takes into account processing 
and sampling latency from the control engineer 
perspective, but also considers latency and jitter 
contributions due to the software implementation and the 
computer hardware [20]. Early in the life cycle, we are 
able to detect, that migration to a partitioned architecture 
may increase latency of critical flows. 

Once the subsystems are refined to the task level we 
can revisit the budget analysis, the latency analysis, and 
perform resource allocation and scheduling analysis. In 
other words, we can create initial models with limited 
effort and perform low fidelity quantitative analysis on a 
system. We then refine the model and the information 
we annotate the model with at incremental cost. 

 

Figure 5: Detailed Hardware Architecture 

The computer architecture is represented in AADL in 
terms of processors, memory, and switches (buses), a 
notation introduced as Processor Memory Switch (PMS) 
in [18], and supports relevant architectural detail to 
explore resource contention issues (Figure 5) [19]. When 
combined with allocation of tasks to processors, code 
and data to memory, and connections to buses, the 
resource demand in form of workload can be derived 
from the application properties. 

Safety-criticality is supported by AADL in a number of 
ways. First, AADL is strongly typed. For example, A 
processor specification indicates that it requires access 
to a Peripheral Component Interconnect (PCI) bus and 
an Ethernet, then only a PCI bus can get connected to 
the one bus access feature. Second, the protected 
address space enforcement of processes and resource 
allocation enforcement of virtual processors ensure time 
and space partitioning. Third, a safety level property on 
system components, initially used for major subsystems 
and later attached to more detailed components, is used 
to ensure that components with high safety criticality are 
not controlled by or receive critical input from low 
criticality components. Fourth, AADL has a built-in fault-
handling model for application threads and extends into 

an explicit representation of a health monitoring 
architecture, and fault management by reconfiguration, 
which is modeled through AADL modes. Fifth, AADL 
support fault modeling through the Error Model Annex 
standard [17], which allows us to introduce intrinsic 
faults, error state machines, and fault propagations 
across components – including stochastic properties 
such as probability of fault occurrence. These 
annotations to the architecture support hazard and fault 
impact analysis as well as reliability and availability 
analysis. Finally, the dynamic behavior of the architecture 
is represented by modes and further refined through the 
Behavior Annex standard [22]. This allows us to apply 
formal methods such as model checking to validate 
system behavior, as was done for the mode logic of a 
dual redundant flight guidance system (shown in Figure 
6) [21].  

 

Figure 6: Dual Flight Guidance System 

The architecture model can be further refined by 
associating detailed design models with individual 
components, such as Modelica models for physical 
components, VHDL models for hardware components, 
and Simulink or Scade models and Java source code for 
software components. This allows us to validate the 
detailed design against the architectural specification of 
components and their interfaces. Figure 7 illustrates this 
collaborative approach to engineering systems. 

 

Figure 7: Co-Engineering of Systems 



 

At the architecture level, it is desirable to combine AADL 
with the System Modeling Language (SysML) for 
collaborative engineering by system architects and 
embedded system architects. The focus of SysML is to 
represent the requirements, structure, behavior, and 
parametrics [23], in addressing multiple aspects of a 
system.  The two standards working groups have started 
to collaborate in an alignment of the two notations.  

CONCLUSION 

In this paper, we have made the case that the embedded 
software system has become a major contributor to 
system-level faults in to today’s systems. A range of 
system-level failures has been illustrated. The ability to 
represent embedded software systems in terms of 
concepts whose semantics are well defined, is key to 
understanding the root causes of such system-level 
faults and analyzing system models to validate its safety 
criticality requirements. We have shown that AADL is 
able to play this role and act as the single source 
architecture representation for analytical models. 

The benefits of this model-based engineering approach 
with focus on the system architecture include: 

• Reduced risk through analysis early and throughout 
the life cycle, understanding of system-wide impact 
of changes, and validation of assumption across the 
system architecture;  

• Increased confidence through model validation to 
complement  integration testing, validation of 
assumption made by models against the 
implementation, and analysis of evolving model into 
higher fidelity;  

• Reduced cost through fewer system integration 
problems, and fewer validation steps through the use 
of a single source model repository and generation 
of analytical models as well as implementation code.  

Recognizing the challenges of embedded software 
systems and the potential value of this architecture-
centric approach, the Aerospace Vehicle Systems 
Institute (AVSI), a cooperative of aerospace companies, 
government organizations, and academic institutions, 
has launched an international, industry-wide program 
called System Architecture Virtual Integration (SAVI). 
Major players of the SAVI project include Boeing, Airbus, 
Lockheed Martin, British Aerospace Engineering (BAE) 
Systems, Rockwell Collins, General Electric (GE) 
Aviation, Federal Aviation Administration (FAA), 
Department of Defense (DoD), Software Engineering 
Institute (SEI), Honeywell, Goodrich, Hamilton 
Sundstrand, and National Aeronautics and Space 
Administration (NASA).  
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DEFINITIONS, ACRONYMS, ABBREVIATIONS 

AADL: Architecture Analysis & Design Language  

ADIRU: Air Data Inertial Reference Units. 

AVSI: Aerospace Vehicle Systems Institute. 

BAE: British Aerospace Engineering. 

COP: Common Operational Picture. 

DMA: Direct Memory Access. 

DoD: Department of Defense. 

DPCP: Distributed PCP. 

FAA: Federal Aviation Administration. 

GAO: General Accounting Office. 

GE: General Electric. 

IMA: Integrated Modular Avionics. 

MMC: Modular Mission Computer. 

NASA: National Aeronautics and Space Administration. 

NIST: National Institute of Standards and Technology. 

PCI: Peripheral Component Interconnect. 

PCP: Priority Ceiling Protocol. 

PMS: Processor Memory Switch. 

RMS: Rate-Monotonic Scheduler. 

RTOS: Real-Time Operating System. 

SAVI: System Architecture Virtual Integration. 

SEI: Software Engineering Institute. 

SysML: System Modeling Language. 

UML: Unified Modeling Language. 

VHDL: VHSIC (Very High Speed Integrated Circuits) 
Hardware Description Language. 

 


