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1 RATIONALE 

This document presents an approach for the modelling of hardware concerns of avionics 
architecture. The main goal is to help system designers to asses their architecture, evaluate 
and find potential errors or requirements trade-offs at the earliest during development. 
 
To do so, we propose a dedicated design approach that allows designers to: 

1. Specify mission criteria in a dedicated formalism 
2. Describe system functional architecture with its requirements 
3. Refine the functional architecture by specifying its implementation using 

generic building blocks 
4. Validate the implementation by checking mission criteria fulfilment. 
 

This development approach is practical: most of the time, designers reuse existing 
components to avoid new developments (which is error-prone, costly). In addition, 
feedback from the industry demonstrates that functional architecture may vary but actual 
implementations are quite similar and only introduce some variations. 
 
However, components reuse may lead to error: assembly of components from different 
projects may be incompatible and cause issues that are difficult to detect. In addition, it is 
especially important to check that planned implementation can meet mission requirements 
(in terms of processing capacity, power, etc.). Such an assessment is very difficult to trace 
and find and can significantly increase development costs (in terms of time, money, etc.). 
 
By introducing modelling at the earliest in the development process, we describe all 
requirements that may be conflicting, even if all requirements are not known. Then, during 
the refinement of the architecture, the functions are detailed and analysis tools can then 
detect more potential issues. 
 

2 DESIGN FLOW 

We propose the following design approach that consists in three main steps, as illustrated 
in Figure 1: 

1. System designers specify mission requirements as well as the functional 
architecture of the system using models. In that step (illustrated in red in Figure 1), 
only functional aspects are described and the level of details is still low. 



 

 

2. Functions are refined using generic building blocks, describing the planned 
implementation of the final system. Each building block specifies the resources they 
consume (in terms of computation capacity, weight, power, etc.). During that 
refinement step (illustrated in blue in the Figure 1), all requirements are specified so 
that the details level is more fine-grained (as illustrated in Figure 2): each 
component specifies its implementation detail (in terms of memory consumption, 
etc.). 

3. Automatic validation tools analyze the implementation model produced 
during the refinement process and assess the feasibility of the implementation 
according to mission criteria and system functions. After that step (illustrated in 
green in Figure 1), designers know if the implementation meets mission criteria and 
can start to build and implement it or if the architecture and/or mission criteria 
must be revised.  
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Figure 1 - Design approach 

 
 
 
To model mission requirements, the functional architecture and planned implementation, 
we use AADL models. AADL provide a modelling language suitable to software and 
hardware modelling. It also offers several extensions mechanisms, which ease its 
adaptation to different modelling approaches. In our context, we tailor the AADL 
modelling language to our needs by extending it with analysis methods or new properties. 
 



 

 

The main purpose of this approach is to verify that the final implementation fulfils mission 
criteria and does not exceed its limits. To do so, an automatic validation tool checks 
mission requirements against implementation characteristics (in terms of system 
properties such as bus bandwidth, weight, etc.). 
 
 
 
This design approach is iterative, in the sense that designers can describe system 
architecture in a functional sense, without having to specify all characteristics of the 
system. Then, during the refinement process, components are replaced by generic building 
blocks that contain all properties and requirements so that validation tools can analyze and 
assess system feasibility. The following picture illustrates the relation between the details 
level and the evolution of the design process. 
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Figure 2 - Architecture details through design process 
 
 

2.1 Mission criteria 

Mission criteria represent requirements to be met by the mission. These requirements 
must be fulfil by the implementation of the system. There is a partial list of potential 
mission criteria: 
 
Criteria name Description Value/unit 

Orbit Where the mission will take place. Depending 
on this value, several characteristics must be 
considered by validation tools (radiation level, 
etc.). 

Ground, LEO, GEO, 
GTO, DeepSpace, 
HighRad 



 

 

Duration Duration of the mission. This time 
corresponds to the total mission time and 
potential deorbitation. 

Time 

Independence of 
payload 

Specify if payload equipment depends on the 
central control unit (the OBC) or if each 
payload is independent. 

<Boolean> 

Costs Estimation of costs related to the system. Low/Medium/High 
Interruption 

time 
Maximum interruption time that can be 
tolerated when the system is operating. 

Time 

Max units Maximum of units that can be collocated in 
the system. This requirements typically 
represents the maximum physical nodes 
connected within system implementation. 

<integer> 

Fault detection Ability to detect faults and reconfigure the 
system while in operation. 

<Boolean> 

Memory need 
for data 

Required size of memory to store system data 
(incoming values from payload, etc.). 

<integer> bytes 

Mass Maximum mass of the system. <integer> g 
Risks Industrial risks for the design and 

implementation of the system. 
Low/Medium/High 

Power Power consumption of the system. W 
 
 

2.2 Functions requirements 

Functions requirements represents request or expected performance criteria. There is a 
potential (and still incomplete) of a list of such requirements: 
 
Requirements Description Value/unit 

Mass Maximum weight of the system. <integer> g 
Power Power consumption allocated to this function <integer> W 

Memory Memory request for the function. <integer> bytes 
Costs Estimation of costs related to the system. Low/Medium/High 
Risks Industrial risks for the design and 

implementation of the system. 
Low/Medium/High 

 
 

2.2.1 Buses and buses connections requirements 

Even if buses between functions don’t model real buses, requirements and constraints 
could be associated with these architecture elements. We propose the following list of 
potential criteria to be associated with functional buses:  
 
Requirements Description Value/unit 

   



 

 

Buses requirements 
Bandwidth Requested bandwidth of the bus.  <integer> bytes per s 

Latency Requested latency of this bus Time 
 
Requirements of buses connections 

Throughput Amount of data to be sent or received by a bus 
connection. 

<integer> bytes per s 

Bus Pattern Specify the expected bus kind for this 
connection (point to point, etc …) 

PtP, MultiPoint 

 
 
 
 

2.3 Generic building blocks requirements 

Generic building blocks requirements are composed of the functions requirements and 
other requirements dedicated to the implementation. These requirements are most of the 
time specific to a given equipment. For example, for a memory, the generic building block 
will redefine the functional requirement (mass, power consumption, etc.) but also describe 
the amount of data it provides (number of chip, amount of memory on each chip, etc.). 
 
So, generic building blocks requirements should be seen as: 
 

Requirements of functions + Requirements dedicated to building blocks 
 
 
By doing so, the requirements of the generic building blocks can also be validated against 
the one from the function: does the implementation fulfil its associated function 
requirements? For example, the implementation can be heavier than the expected weight 
specified at the functional step. 
 

 



 

 

AADL MODELLING PATTERNS 

2.4 System requirements and mission criteria modelling 

System requirements are described in the AADL root component, a system component.  
 
This component defines several AADL properties which specify mission criteria to be met. 
AADL already provides a set of predefined properties (called the standard properties) that 
are ready-to-use for system designers. New property sets can also be added by AADL users, 
extending the definition of the potential requirements of each component. 
 
For that purpose, we introduce our own properties for the definition of mission criteria. 
 

2.5 Functional blocks modelling 

Functional blocks are specified using an AADL system or abstract component. These 
components are declared as sub-component of the AADL root system that represents the 
main mission component. 
 
Only these components can be used: no specialized software/hardware component can be 
introduced at that point. As for mission criteria, these components describe their 
requirements using standards or user-defined AADL properties. To model required 
communication between functions, AADL features are added to these components. 
However, at that point, as no decision is taken on the kind of bus to be used, AADL bus or 
data access of these components must reference generic buses. 
 

2.5.1 Modelling functional buses 

As we pointed out in the previous sections, functions communicate through bus. But at that 
point of the design process, system designer does not know the kind of bus to be used in its 
architecture (SpaceWire, 1553, CAN, etc.). 
On the one hand, at the functional level, designers want to specify potential interactions 
between functions without describing all requirements. On the other hand some 
requirements criteria could be specified at this level, even if all implementation concerns 
are not known (such as the required bandwidth, etc.). 
For this reason, only access to generic components should be added to the AADL 
components that model system functions. Then, when requirements have to be specified, 
they must be associated: 

1. On the instance of the generic bus 
2. On the feature of the AADL system/abstract component that represents 

the function. 
 



 

 

2.6 Generic building blocks for the modelling of system 
implementation 

Generic building blocks are represented into an AADL component with a specialized type 
(such as device, processor, process, memory, etc.). It could also be specified using a system 
component with several sub-components. In that case, the function is implemented using 
several other components organized within a hierarchy. 
The component (or collection of components if the implementation component is a system) 
indicates the nature of the implementation (hardware or software) and specifies all its 
requirements. This specialized component refines its corresponding functional component 
(abstract or system) and also redefines the buses connections to be used: the 
implementation component expresses its buses requirements by referencing real bus, not 
generic ones. 

2.7 First example 

We illustrate the modelling patterns with a small example that is a simple system with one 
processor, one memory and one software component that do some computations. 
 

2.7.1 System requirements 

The system must consume at most 300W and have 1Gbytes of memory. The corresponding 
AADL component that models such a system would be: 
 

system firstexample 
properties 
   Memory    => 1Gbytes; 
   Mass      => 1 Kg;  
   Power     => 30W; 
end firstexample; 

 

2.7.2 System functions 

The system is composed of three functions: 
1. Memory 
2. Processing unit 
3. Software that perform various computations (such as control algorithms in AOCS) 

 
The memory is then represented with an abstract component and the requirements that 
must be fulfilled by the implementation. 
 

abstract memory 
features 
   busaccess : requires bus access genericbus; 
properties 
   Memory    => 1 Gbytes; 
   Mass      => 500g; 
end memory; 

 



 

 

The processing unit is also specified using an abstract component with its properties. 
 

abstract processing_unit 
features 
   busaccess : requires bus access genericbus; 
properties 
   Computation_Capacity  => 100 MIPS; 
   Mass                  => 400Kg; 
end processing_unit; 

 
Finally, the control loop component represents the function that does some computations. 
 

abstract control_loop 
properties 
   Computation_Requirement => 60 MIPS; 
end control_loop; 

 
Readers can also notice that we specify the required connection points for each component: 
in this example, the processing unit as well as the memory must have an access point to a 
bus. At this step (functional view), this connection is specified using a “generic bus”, which 
means it has to be connected but makes no assumption about the implementation of the 
bus. 
Then, the root system is redefined by adding these functional components. We also add a 
connections section to this AADL component to represent functions inter-connections with 
the functional bus. 
 

system implementation firstexample.functional 
subcomponents 
  pu :  abstract processing_unit; 
  cl :  abstract control_loop; 
  mem:  abstract memory; 
  thebus:  bus genericbus; 
connections 
  bus access thebus -> pu.busaccess; 
  bus access thebus -> mem.busaccess; 
end firstexample.functional; 

 
The corresponding AADL graphical notation would be like the following figure: 
 

bus 

mem pu 

firstexample.functional 

cl 

 
 



 

 

2.7.3 Generic building blocks 

Now, functional components are redefined by replacing them in the architecture with 
implementation components. 
 
The memory function is then specified using a memory component. 

memory  RAM 
properties 
   Word_Size  => 32 bytes; 
   Word_Count => 35 000 000; 
   Weight     => 200 g; 
end memory; 

 
processor leon 
properties 
   Computation_Capacity => 100 MIPS; 
   Weight               => 500 g; 
end leon; 

 
process attitude_control 
properties 
   Computation_Requirements => 65 MIPS; 
end attitude_control; 

 
system implementation firstexample.impl extends firstexample.functional 
subcomponents 
   mem : refined to memory RAM; 
   pu  : refined to processor leon; 
   cl  : refined to attitude_control; 
   bus : refined to amba; 
properties 
   Actual_Processor_Binding => (reference (pu)) applies to cl; 
end firstexample.impl; 
 
 

 
The corresponding graphical AADL notation with specialized components is specified 
below: 
 

amba 

mem pu cl 

firstexample.functional 
 

 
 



 

 

3 EXAMPLE 

In the following, we illustrate the proposed design method using a practical example. 
This example is a small satellite that takes pictures of a planet, processes the data and 
sends the result to the ground. 

This simplified system shows the overall approach of the method and how mission 
requirements can be automatically validated using AADL models. 

3.1 Mission requirements 

 Duration: 1 year 
 Payload storage needs: 1 Gbytes 
 Max weight: 70Kg 

 
system mission  fake
properties 
   ARAM_Properties::Max_Mass           => 70 Kg; 
   ARAM_Properties::Mission_Duration   => 365 day; 
   ARAM_Properties                     => 1Gbyte; 
end fakemission; 

 

3.2 System functions 

The system is composed of the following functions: 
 A Mass Memory subsystem to store data from the payload 
 A TM/TC subsystem which receives telecomand from earth and sends telemetry 

(data acquired by the payload) 
 AOCS to control the spacecraft using sensors and actuators. 
 Payload equipment that acquired data from digital sensors. In this mission, there is 

only one payload equipment: a camera that takes pictures of a planet.   
 An On-Board Computer (OBC) that processes the data from the Payload and 

stores its data to the Mass Memory. 
All these functions are then connected through a bus to communicate together (OBC to 
send its data to the TM/TC or the Mass Memory subsystems). The overall architecture is 
depicted in the following figure. 
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The following AADL textual model provides a description of the architecture with its 
function. Here, the word implementation means that the fakemission component is 
extended with its sub-components: it does not indicate any implementation guidance. So, 
this model adds system functions with abstract components.  
Required connections to a bus are also illustrated using the connections section of the 
component: sub-components are connected to a generic bus. It means that these 
components will communicate together using a bus. At that point, the properties and 
requirements of the bus are not specified: it will be done during architecture refinement 
with the specification of the bus implementation. 
 
system implementation fakemission.functional 
subcomponents 
   aocs       : abstract faocs; 
   tmtc       : abstract ftmtc; 
   mm         : abstract fmm 
      {ARAM_Properties::Minimum_Size => 100 GByte;}; 
   payload    : abstract fpayload 
      {ARAM_Properties::Required_Bandwidth => 20 KBytesps;}; 
   obc        : abstract fobc; 
   thebus     : bus genericbus 
      {ARAM_Properties::Bandwidth => 1000 KBytesps; 
       ARAM_Properties::Bus_Type  => mtp}; 
connections 
   bus access thebus -> aocs.busacccess; 
   bus access thebus -> tmtc.busacccess; 
   bus access thebus -> mm.busacccess; 
   bus access thebus -> payload.busacccess; 
   bus access thebus -> obc.busacccess; 
end fakemission.functional; 

 
We don’t include the specification of the different AADL abstract components here 
because they are globally identical. The differences would be in the definitions of their 
associated AADL properties. In addition, as all AADL components are connected to the 
same functional bus, the generic AADL abstract component would look like this: 
 

abstract functionname 
features 
  busaccess : requires bus access genericbus; 
properties 
  --  Properties of the function 
end functionname; 

 
 

3.3 Refinement to a concrete implementation 

Now, we define several AADL components using specialized types. Each of them represents 
the concrete implementation of one system function, refining its properties, providing its 
implementation kind (hardware/software) and indicating the type of bus to be used 
(SpaceWire, 1553, etc.). 
 



 

 

In terms of buses, our system implementation will interconnect its functions using a 1553 
bus. 

3.3.1 Mass Memory 

The implementation of the Mass Memory is represented using an AADL memory component 
that requires an access to a 1553 bus. It means that this function is implemented with a 
hardware component directly connected to the bus. AADL properties of the component 
describe its constraints (such as the provided memory size). 
 

memory M  M
features 
   busaccess : requires bus access bus1553; 
properties 
    ARAM_Properties::Mass => 2Kg; 
    Word_Size             => 32 bytes; 
    Word_Count            => 35 000 000; 
end MM; 

 

3.3.2 TM/TC subsystem 

The TM/TC (Telemetry and Telecommand communication) function is implemented using 
a dedicated hardware device connected to the 1553 bus. This piece of hardware 
communicates directly to the ground and exchange with the On-Board Computer using the 
1553 bus. 
 

device tmtc 
features 
   busaccess : requires bus access bus1553 
      {ARAM_Properties::Required_Bandwidth => 500 Bytesps; 
       ARAM_Properties::Expected_Latency   => 100 ms .. 200 ms;}; 
properties 
    ARAM_Properties::Mass => 400 g; 
end tmtc; 

 

3.3.3 AOCS 

AOCS function gathers sensors and actuators. It collects received values from sensors and 
sends command to actuators to control the spacecraft. We divide this function into two 
components, each of them represented using AADL device components. Then, a global 
AADL system component assembles these devices and connects them to the 1553 bus.  
 

device aocs_sensors 
features 
   busaccess : requires bus access bus1553 
      {ARAM_Properties::Required_Bandwidth => 4000 Bytesps;}; 
properties 
   ARAM_Properties::Mass => 2 Kg; 
end aocs_sensors; 
 



 

 

device aocs_actuators 
features 
   busaccess : requires bus access bus1553 
      {ARAM_Properties::Required_Bandwidth => 1000 Bytesps;}; 
properties 
    ARAM_Properties::Mass => 6 Kg; 
end aocs_actuators; 
 
 
system aocs 
features 
   busaccess : requires bus access bus1553 
      {ARAM_Properties::Required_Bandwidth => 5000 Bytesps;}; 
properties 
    ARAM_Properties::Mass => 10 Kg; 
end aocs; 
 
system implementation aocs.i 
subcomponents 
   actuators : device aocs_actuators; 
   sensors   : device aocs_sensors; 
connections 
   busaccess -> actuators.busaccess; 
   busaccess -> sensors.busaccess; 
end aocs.i; 

 

3.3.4 Payload subsystem 

The payload function can host various devices which collect data to be processed by the on-
board computer. In our case, the payload is composed of one low-resolution camera that 
collects one image and stores it internally. Later, the On-Board Computer (OBC) retrieves 
and processes it (and potentially sends it to the memory or directly to the ground). 
 
We model the camera using an AADL device component. The expected bus throughput is 
associated with the bus access feature, indicating that the device will output 100 Kbits per 
second. The maximum amount of mass memory used during the mission is evaluated to 10 
Mbytes. 
 
Finally, the device is added to a global AADL system component that contains all payload 
equipments. This intermediate system component is used to ease the integration of other 
components: if designers want to add a new payload equipment, he has to add a new sub-
component to this system component without modifying the other parts of the AADL 
model. 
 

system payload 
features 
   busaccess : requires bus access bus1553 
      {ARAM_Properties::Required_Bandwidth => 20 KBytesps; 
       ARAM_Properties::Expected_Latency   => 100 ms .. 200 ms;}; 
properties 
    Weight => 2Kg; 
end payload; 



 

 

 
device camera 
features 
   busaccess : requires bus access bus1553 
      {ARAM_Properties::Required_Bandwidth => 20 KBytesps;}; 
properties 
    Weight       => 900 g; 
    Memory_Needs => 10 Mbyte; 
end camera; 
 
system implementation payload.i 
subcomponents 
   equipment : device camera; 
connections 
   bus access busaccess -> equipment.busaccess; 
end payload.i; 

 

3.3.5 On-Board Computer (OBC) 

The OBC function is represented using two AADL components: 
 
1. An AADL processor that models the physical hardware part as well as the underlying 

operating system 
2. An AADL process component that represents the software to be run on the target 

processor. The property Actual_Processor_Binding specifies the association between 
software process and its associated processor. 

 
 
Then, these two components are gathered within a single system component that defines 
the actual implementation of the OBC function. 
 
 

processor leon 
features 
   busaccess : requires bus access bus1553; 
properties 
   ARAM_Properties::MIPS            => 100; 
   ARAM_Properties::Mass            => 500 g; 
   ARAM_Properties::Required_Memory => 19 Mbyte; 
end leon; 
 
process control_program 
properties 
   Source_Code_Size => 300 Kbyte; 
   Source_Data_Size => 3 Mbyte; 
end control_program; 
 
system obc 
features 
   busaccess : requires bus access bus1553 
   {ARAM_Properties::Required_Bandwidth => 20 KBytesps; 
    ARAM_Properties::Expected_Latency   => 100 ms .. 500 ms;}; 



 

 

properties 
    ARAM_Properties::Mass => 1000 g; 
end obc; 
 
system implementation obc.i 
subcomponents 
   cpu : processor leon; 
   prs : process control_program; 
connections 
   bus access cpu.busaccess -> busaccess; 
properties 
   ARAM_Properties::Required_Memory => 30Mbytes; 
   Actual_Processor_Binding => (reference (cpu)) applies to prs; 
end obc.i; 

 
 

3.3.6 Bus implementation (1553) 

We also model the bus to be used in the system implementation. This would be a 1553 bus, 
which allows connection of several nodes. For this example, we also specify that this 
implementation of the 1553 bus has a speed of 1 Mbits per second and a worst latency time 
of 100 ms. 
 

bus bus1553 
properties 
   ARAM_Properties::Bus_Type     => mtp; 
   ARAM_Properties::Bandwidth    => 1 MBytesps; 
   ARAM_Properties::Max_Latency  => 100 ms; 
end bus1553; 

 

3.4 Final system implementation 

 
The following AADL model (graphical and textual) represents the final implementation. It 
consists of AADL system component that extends the functional one with specialized AADL 
sub-components. In the following, each sub-component is refined with the specialized 
components defined in previous sections. 
 
system implementation fakemission.implementation extends fakemission.functional 
subcomponents 
   aocs       : refined to system aocs; 
   tmtc       : refined to device tmtc;  
   mm         : refined to memory mm; 
   payload    : refined to system payload; 
   obc        : refined to system obc; 
   thebus     : refined to bus1553; 
end fakemission.implementation; 
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4 VALIDATION OF THE ARCHITECTURE 

Once our architecture is refined, it includes all components specificities and requirements 
so that we can use a validation tool that will process the model and check for requirements 
enforcement. This section provides some ideas about model validation and what the tool 
would check in the component hierarchy. In particular, we detail the three different 
validation steps that involve every aspects of the design process (mission criteria definition, 
functional architecture and system implementation). In addition, we also perform an 
additional validation step of the functional and implementation architectures, without 
considering the other representations of the architecture: this is more a consistency 
validation of the model. 
 

4.1 Mission criteria vs. Implementation validation 

First, we can validate mission criteria fulfilment against system implementation. In our 
example, we can validate two aspects: 

1. Mass of the implementation is less than the expected Mass. This can be 
done by validating than the sum of the mass of all AADL sub-components of the root 
component of the implementation (fakemission.impl) is less than the property 
Max_Mass of the mission criteria system (fakemission). This requirement is 
enforced, mission criteria requires that the mass is less than 70Kg while the sum of 
the mass of all sub-components is equal to 15.4 Kg. 

2. Size of the Mass Memories is greater or equal to the size of the size 
required by the system. This is done by validating that the sum of all memory 
sub-components of the root system implementation (fakemission.impl) is greater 
than the property Required_Memory defined on the mission criteria system 
(fakemission). Note that the size of a memory components is calculated using the 
Word_Size and Word_Count properties. In our case, the system requires 1 Gbytes and 
the Mass Memory has a Word_Size property of 32 bytes and a Word_Count property 
of 35 000 000. So, the requirement if enforced (32 bytes * 35000000 = 1120 000 
000 bytes). 

 

4.2 Mission criteria vs. Functional architecture validation 

Mission criteria fulfilment is also checked against the functional architecture. We 
validate that the memory size required by the mission is provided by the 
functional architecture. This can be done by checking that the value of the 
Required_Memory property of the mission criteria system (fakemission) is lesser or equal to 
the sum of the Minimum_Size of all AADL sub-components of the functional system 
(fakemission.functional). In our case, the value is equal : mission criteria requires 1 
Gbyte while the only AADL functional sub-component that specifies a memory defines a 
minimum size of 1 Gbyte. 
 
 



 

 

4.3 Functional architecture vs. Implementation validation 

Finally, we can check system implementation and its refinement into an implementation. 
The following aspects are validated: 

1. Size of memory components: the tool can check that implementation of 
memory components provide a memory size that is greater or equal to its functional 
definition. In our case, this is done be verifying that the Minimum_Size property of 
the mm component (1 Gbyte) is less or equal than the value Word_Size * Word_Count 
(32 bytes * 35000000 = 1120 000 000 bytes) of the mass_memory component. 

2. Bus latency: model validation tool checks that bus latency is less than the latency 
expected by each component connected to it. This is done by inspecting every 
component that has an access to the bus and checking that the Latency property of 
the bus is less or equal to the lower value of the Expected_Latency of each 
component that access to the bus.  For example, the tmtc component expects latency 
between 100ms and 200ms. As the bus (bus1553) provides a latency of 100 ms, this 
requirement is enforced (but this validation has to be done on every component that 
accesses the instance of the bus1553 component). 

3. Bus bandwidth: validation tool checks that bus capacity is greater or equal to the 
bandwidth required by the components that access it. As for the latency, this is done 
by inspecting every component that has an access to the bus and checking that the 
Required_Bandwidth property of the accessing component is less or equal to the 
Bandwidth property associated to the bus. For example, the aocs sub-system 
specifies a Required_Bandwidth property of 5000 Bytesps. As the bus provides a 
bandwidth of 1 Mbyteps, this requirement is enforced (but is has to be done for 
every component that accesses the bus). 

 

4.4 Functional architecture consistency validation 

Some aspects of the functional architecture can be validated without considering mission 
criteria or implementation concerns. Validation tools can verified the following aspects on 
our example: 

1. Bus bandwidth: the Bandwidth of the bus is sufficient regarding the requirement 
of the components that access it. This is done by verifying that the Bandwidth 
property of the bus (component genericbus) is greater or equal to the expected 
bandwidth bus access connected to the bus. For example, in our functional view, the 
payload subsystem requires 100 KBytesps and the bus provides a bandwidth of 
1000 KBytesps so that the requirement is enforced. 

2. The bus type: if the bus is a Multipoint one (value of the property Bus_Type set to 
mtp), several components can share an access to it. On the other hand, if the value of 
the Bus_Type property is ptp (this is the case for SpaceWire buses), only two 
components can share the bus. In our example, the bus is a multipoint one and 
several components have an access to it. 

 
 



 

 

4.5 Implementation architecture consistency validation 

Finally, validation tools can also verified some consistency on the implementation model 
without considering other system representations. On our example, the following aspects 
can be checked: 

1. Bus type. The bus that connects components is adequate. If the bus connects more 
than two components, the Bus_Type property must have the value mtp. If the bus 
connects only two components, it can have a Bus_Type property set to ptp (Point to 
Point) or mtp (Multi-Point). 

2. Bus latency 
a. Latency of the bus (the Max_Latency property associated to the bus 

component) must be less or equal than the lower value of the 
Expected_Latency property associated to every component that accesses it. In 
our example, the bus component has a property Max_Latency with a value of 
100 ms while the components that access it requires a latency that it at least 
100 ms. So, this requirement is enforced (and has to be processed on every 
component that accesses to the bus). 

b. In a system that contains several sub-systems, the expected latency of the 
sub-system is less or equal than the latency expected by each of its sub-
components.  

3. Bus bandwidth 
a. Bandwidth of the bus (the Bandwidth property associated to the bus 

component) must be less than or equal to the Required_Bandwidth of every 
component that accesses it. In our example, the bus component (bus1553) has 
a property Bandwidth with a value of 1 MBytesps while the components that 
access it require at least 200 KBytesps. So, this requirement is enforced (and 
has to be processed on every component that accesses to the bus). 

b. In a system that contains several sub-components, the required bandwidth of 
the sub-system is greater or equal than the sum of the bandwidth required by 
all sub-components. For example, in our example, the aocs sub-system 
requires a bandwidth of 200 Bytesps and each of each sub-component 
requires a bandwidth of 100 Bytesps. So, this requirement is enforced but 
has to be processed on every sub-component with the system type contained 
in the root component. 

 

 



 

 

5 MODELLING WITH AADL: CURRENT ISSUES 

This section presents some issues users can encounter when using AADL to model their 
architecture, especially during the refinement process. It also provides a general view of 
potential issues and ongoing work to perform for the establishment of a modelling 
platform. 
 

5.1 Level of refinement 

When refining an AADL abstract component into a specialized one, the standard is not 
really clear about the feature refinement and how features are refined. In particular, in 
our context, we want to change the bus type associated to a bus access feature. For 
example, we have an abstract component with a bus access to a genericbus component. 
 

abstract mycomponent  
features 
  ba : requires bus access genericbus; 
end mycomponent; 

 
This component is then used in a system implementation, for example: 
 

system implementation example.i 
subcomponents 
  s : abstract mycomponent; 
end example.i; 

 
Then, we define a new component with a concrete type 
 

processor cpu 
features 
  ba : requires bus access implementationbus; 
end cpu; 

 
And finally, we define a new system implementation that extends the first one and refines 
its sub-component. 
 

system implementation example.i2 extends example.i 
subcomponents 
   S : refined to processor cpu; 
end example.i; 

 
The following example leads to an error, because the concrete component cpu redefines 
feature ba of the mycomponent component. 
 



 

 

5.1.1 First proposed workaround: concrete component extending the 
abstract one 

One solution would be to model the cpu component as an extension of mycomponent and 
refine the ba feature. Then, the cpu component would be declared like this: 
 

processor cpu extends mycomponent 
features 
  ba : refined to requires bus access implementationbus; 
end cpu; 

 
When using such a construction, current AADLv2 parser (such as Ocarina) reports an 
error. 
 

5.1.2 Second proposed workaround: features refinement in instances 

Another workaround would be to allow the redefinition of feature in the instance tree. In 
that case, we could refine the feature definition of the cpu component in the declaration of 
the example.i2 component. The declaration would also be the following: 
 
 

system implementation example.i2 extends example.i 
subcomponents 
   S : refined to processor cpu  
                {ba refined to requires bus access implementationbus;}; 
end example.i; 

 
Such a workaround would introduce a modelling flexibility and such, would ease 
components reuse. 
 

5.2 Prototypes 

The prototype concept introduced by the version 2 of AADL seems quite promising for our 
approach. In particular, when the differences between two components is not significant, 
we could model a prototype and instantiate them later to add their specificities. 
 
For example, one can consider a generic execution platform, called cpu. When designing 
the component for the first time, the designer does not know the kind of bus connected to 
this execution platform. Then, he just adds a prototype to specify that the component 
requires a bus access, without specifying it. Later, he can specify new components that 
extend it and defines the type of bus actually used. 
 
For example, we specify the following cpu component: 
 

processor pu  c
prototypes 
   Bus_type : requires bus access; 
features 



 

 

   ba : requires bus access bus_type; 
end cpu; 

 
Later, the designer can specify an execution platform that requires an access to a 
SpaceWire bus (component cpu.i): 
 

processor cpu.spw extends cpu.i 
         (bus_type => requires bus access spacewire) 
end cpu.spw; 

 
However, the definition and the use of components prototypes are not clear in the 
standard. Especially, no example illustrates the use of prototype on bus access, even if the 
standard indicates that it is legal from a syntax and semantic point of view. 

 

5.3 Tool support for validation 

5.3.1 Requirements Enforcement and Analysis Language (REAL) 

The Requirements Enforcement and Analysis Language (REAL) provides a formalism to 
validate AADL models by analyzing the components hierarchy. It processes the AADL 
components tree, inspects their content (properties, sub-components, features, etc.) and 
checks them against so-called theorems. A REAL theorem is a piece of code associated to a 
component that makes more explicit the requirements to be validated on a given 
component. 
 
For example, a REAL theorem can specify that the amount of memory provided by an 
AADL memory component must be greater than the memory required by its associated 
process components. Another example: a REAL theorem can specify that a SpaceWire bus 
(that is a point-to-point bus) cannot connect more than two. For that, it will inspect 
SpaceWire buses and check if more than two components are connected to this bus. 
 
REAL provides an efficient way to analyze and validate AADL models. Especially in our 
context, the validation of the system could be achieved using predefined REAL theorems 
that checks for power consumption, memory capacity, etc. 
 
At the end, the tool has one limitation: in case of the use of typed properties (such as 
memory, computing capacity, etc.), the tool does not consider units and only analyzes 
property values. This can be a major issue, especially where unit concerns can lead to real 
bugs. However, this can be solved by improving the tool and describing how to validate 
each property with respect to its units. 
 



 

 

5.3.2 Dedicated annex for requirements enforcement 

To standardize the way models are validated and cope with issues identified in the REAL 
tool, the AADL committee is currently investigating the potential of an annex for 
requirements enforcement. 
 
This new annex to the language would describe how to validate AADL models. Such a 
language would be processed by appropriate tools to verify that a model enforces a given 
set of rules. 

 

5.4 Tool for AADL specification (edition and analysis of models) 

5.4.1 OSATE2 

OSATE is the reference tool for manipulating and editing AADL models. OSATE2 is the 
latest version with the ability to process AADLv2 models. However, at this time, no stable 
version of this tool was released. This tool could be interesting for the edition of AADL 
models. However, it does not provide any graphical edition of AADL models, which is a 
major requirement for a modelling framework. 

5.4.2 Ocarina 

Ocarina is an AADL tool that provides much functionality such as model analysis, code 
generation, and model validation. This is a command-line based tool and only processes 
textual AADL models. However, for this moment, this is the first tool with the ability to 
process AADLv2 models. 

5.4.3 AADLv2 support 

The current support of AADLv2 in commercial or open-source tool is still in progress. In 
the two reference tools (OSATE and Ocarina), only Ocarina is able to process AADLv2 
models. However, some legality rules are still not implemented which makes the support of 
AADLv2 still incomplete. As a matter of fact, AADLv2 support needs to be improved but 
incoming activities should address these issues. 

5.4.4 Graphical Editor 

At that time, there is no graphical editor for AADL, either for version 1 or version 2. Some 
projects have been started but didn’t reach the quality level to be used in projects. 
Consequently, the design and the implementation of a graphical editor for AADL are still 
required and would be a planned activity of the ARAM project. 
 

 
 
 



 

 

6 AADL DEFINITION OF ARAM DEDICATED PROPERTIES 

 
property set ARAM_Properties is 
 
Frequency: type aadlinteger 0 Hz .. Max_Aadlinteger 
   units (Hz, 
          KHz    => Hz  * 1000, 
          MHz    => KHz * 1000, 
          GHz    => MHz * 1000); 
 
CPU_Speed: Frequency applies to (processor); 
 
MIPS: aadlinteger 0 .. Max_Aadlinteger applies to (processor); 
 
Power_Units: type units (W,  
                         KW  => W * 1000, 
                         MW  => KW * 1000,  
                         GW  => MW * 1000, 
                         TW  => GW * 1000); 
 
Max_Power: constant Power_Units => 2#1#e32 W; 
 
Power: type aadlreal 0 W .. Max_Power units Power_Units; 
 
Power_Consume: Power applies to (processor, device, memory); 
 
Power_Provide: Power applies to (device); 
 
Ionizing_Dose_Units: type units ( 
  rad,  
  Krad  => rad * 1000, 
  Mrad  => Krad * 1000,  
  Grad  => Mrad * 1000, 
  Trad  => Grad * 1000); 
 
Max_Ionizing_Dose: constant Ionizing_Dose_Units => 2#1#e32 rad; 
 
Ionizing_Type: type aadlinteger 0 rad .. Max_Ionizing_Dose  
                                 units Ionizing_Dose_Units; 
 
TID: Ionizing_Type  
               applies to (processor, device, memory); 
 
Mass_Units: type units ( 
  g,  
  Kg  => g  * 1000, 
  T   => Kg * 1000); 
 
Maximum_Mass: constant Mass_Units => 2#1#e32 g; 
 
Mass_Type: type aadlreal 0 g .. Maximum_Mass units Mass_Units; 
 
Mass: Mass_Type applies to (processor, device, memory, system); 
 



 

 

Max_Mass: Mass_Type applies to (processor, device, memory, system); 
 
Required_Bandwidth: Data_Volume  
                     applies to (abstract, system, device, bus access); 
 
Bandwidth: Data_Volume  
                     applies to (abstract, system, device, bus); 
 
Bus_Type: enumeration (mtp, ptp)  
                     applies to (bus, system, abstract); 
 
Mission_Time_Units: type units ( 
                  ps,  
                  ns  => ps  * 1000,  
                  us  => ns  * 1000,  
                  ms  => us  * 1000, 
                  sec => ms  * 1000,  
                  min => sec * 60, 
                  hr => min * 60, 
                  day  => hr * 24, 
                  week  => day * 7); 
 
Mission_Max_Time: constant Mission_Duration_Type => 1000 week; 
 
Mission_Duration_Type: type aadlinteger 0 ps .. Mission_Max_Time  
                       units Mission_Time_Units; 
 
Mission_Duration: inherit Mission_Duration_Type applies to (system); 
 
Required_Memory: inherit Size  
                       applies to (system, abstract, device, processor); 
 
Minimum_Size: inherit Size applies to (memory, abstract); 
 
Expected_Latency: Time_Range applies to (bus, bus access, abstract); 
 
Max_Latency: Time applies to (bus, bus access, abstract); 
 
end ARAM_Properties; 
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