
 

 

 

Modelling Hardware Avionics Architecture with AADL 
 

Julien Delange – julien.delange@esa.int 
Jérôme Hugues – jerome.hugues@isae.fr 

 
 

1 RATIONALE 

This document presents an approach for the modelling of hardware concerns of 
avionics architecture. This is a follow-up of a previous paper (published in the scope of an 
AADL standardization committee - see reference 3) that described our preliminary 
investigations on avionics architecture modelling. It introduced our overall design method, 
to go from mission criteria and mission functions definition to system implementation 
specification.  

 
This new document goes beyond this initial study and details how we can apply our 

methodology on a real mission (GAIA, an earth observation mission, see reference 4). In 
particular, it explains how we can use models to validate system requirements and 
automatically produce materials for validation, verification or analysis purposes. In 
consequence, it focuses on: 

1. Model validation: validation to be done by appropriate tools to ensure that 
requirements defined at a functional level are enforced in the implementation. 

2. Model usage: how models can be used by appropriate tools to produce 
documentation such as traceability information, etc. 

 
Finally, we also propose some guidelines about potential further work and investigation 

to be done in the context of avionics system modelling with the AADL. 
 

Next sections constitute a short reminder about the overall design approach and then, 
introduce the mapping of the GAIA mission to AADL models. 
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2 DESIGN APPROACH & APPROACH - REMINDER 

2.1 Overall presentation 

The main goal is to help system designers to asses their architecture, evaluate and find 
potential errors or requirements trade-offs at the earliest during development, saving 
time/money (see reference 5), improving development process reliability and increasing 
confidence in produced applications. 

Resulting design process (illustrated in Figure 1) focuses on the following phases: 
1. Specify mission criteria and functions with a dedicated formalism. Mission 

criteria represent requirements to be met (mission duration, maximum weight, etc.) 
; functions specify what is achieved by the system (star tracking, observation, etc.). 
At this step, implementation concerns are not considered. 

2. Refine the functional architecture by specifying its implementation using 
predefined building blocks. These blocks specify their requirements (computation 
capacity, weight, power, etc.) so that produced models are amenable for analysis. 

3. Validate the implementation against the functional description and 
mission criteria. Analysis tools check the models evaluate and compare their 
requirements. In particular, they check for requirements correctness and constraints 
enforcement (e.g.: a processor provides sufficient computing capacity for the 
execution of its associated programs). 
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Figure 1 - Design approach 

 
 
 



 

 

To model mission criteria, the functional architecture and planned implementation, 
the AADL language is used as the backbone language. It provides a level of abstraction 
suitable to software and hardware modelling and offers several extensions mechanisms, 
which ease its adaptation to different modelling approaches. In our context, we tailor the 
AADL modelling language to our needs by extending it with analysis methods or new 
properties. 
 

This design approach is iterative, in the sense that designers can describe system 
architecture in a functional sense, without having to specify all characteristics of the 
system. Then, during the refinement process, components are replaced by generic building 
blocks that contain all properties and requirements so that validation tools can analyze and 
assess system feasibility. The following picture illustrates the relation between the details 
level and the evolution of the design process. 
 

2.2 Benefits of this approach 

By using this methodology, designers would expect: 
 Faster design process by reusing predefined building blocks with predefined 

requirements definition 
 Reliable and robust system analysis that relies on automatic analysis tools 
 Saving time in system validation by using automatic analysis tools 

 
As this process automates many aspects of system design and so, avoids, all human-

related error, designers would expect to gain time and efforts when designing a system. 
Benefits of such an approach were already discussed in the context of the SAVI project (see 
reference 5). 
 



 

 

3 APPLY DESIGN APPROACH TO THE GAIA MISSION 

We apply our design approach to the GAIA mission. A recent report (reference 4) details 
how to improve the development process of space mission, applying their methodology to 
the GAIA mission. This report focuses on components reuse, certification/qualification 
materials production and system validation (enforcement of expected requirements). 

This study also depicts the lack of existing tool for the automation of the 
development process so that designers/engineers still have to design the system by 
themselves and check requirements manually. Our current investigations demonstrate how 
system modelling technologies and more specifically AADL can be tailored in that purpose. 

In consequence, we reuse this existing study, map system definition and 
requirements in AADL and discuss how we can automate each development step using the 
AADL. 
 
Next sections are organized as follow: 

1. Description of the GAIA mission from the preliminary study 
2. Reminder of our AADL modelling patterns 
3. Application of our AADL-specific methodology on the GAIA mission 

 
 

3.1 GAIA Mission Overview and mission criteria 

The GAIA mission consists in taking pictures of stars (1 billion stars). The original report 
lists the following mission requirements/criteria: 

 Capture and process stars pictures 
 Store and compress data to be stored in the mass memory 
 Transmit pictures to the ground with a predictable guaranteed % of 

collected data 
 Keep thermal balance of payload cavity 
 Implement smooth degradation over 5 years mission 

 

3.1.1 Functional decomposition 

To meet mission criteria, the following functions are defined: 
1. Get data from FPA (Focal Plane Array, an image-sensing device) (7 raws, 7x50 

Mbps) 
2. Control FPA for star tracking 
3. Process raw data from FPA (images that are taken) for building packets (data 

reduction algorithm:  7 x 600 Mbps) 
4. Compress data lossless (allocation: 5% of overall processing) 
5. Store data and manage memory (optimal allocation and downlink scheduling) 

In addition, the following requirements have to be met by the mission: 
1. Cycle time: 1ms 
2. Constant thermal load 
3. Smooth degradation 



 

 

 
 
The following picture illustrates the decomposition of the system into functions:  

1. First, two functions are dedicated to FPA devices: 
a. One function gets data from each device and sends it to a main system that 

gathers and processes them. 
b. One function controls it (change orientation, etc.) 

2. One function receives the data from all FPA and sends them to be compressed. 
3. One function performs data compression (in order to reduce the memory required 

to store the pictures) and send the result to be stored in the mass memory. 
4. Two functions care about memory concerns : 

a. One manage the hardware memory itself  
b. One issues commands to store/retrieve data from/to the memory. 

 

3.1.2 First implementation: data-centralized on an OBC platform 

In this first implementation, system is divided in three types of blocks (see figure 2): 
1. The FPA management (the ones that gather data from the FPA and controls it) for 

each FPA are implemented in one physical block. This is a specific device that 
receives data from the camera and has the ability to send specific order to it. There 
are 7 devices like this one in this architecture. 

2. The processing functions (that receive data and compress them) are implemented in 
one block, an on-board computer that receives data from the FPA handling devices 
and compress them. 

3. The memory-related functions are also allocated to a common hardware component 
that manages the memory and store/retrieve data. 

Figure 2 show the physical allocation from a logical point of view with the definition of the 
three types of allocation: one related to FPA functions, another to data processing and 
compression and another that cares about data storage. On the other hand, Figure 3 
depicts the deployment of this implementation and the different nodes involved in this 
design. 



 

 

 
Figure 2 - Physical allocation of the first implementation - type of components 

 
 

 
Figure 3 - Physical allocation of the first implementation - deployment 

 



 

 

 
 
 

3.1.3 Second implementation: processing separation on FPA devices 

The second implementation is an optimization of the first one, removing the on-board 
computer that processes and compresses data from the FPA devices. Instead, each device 
that handles FPA data process and compress the data it received by itself. By doing so, it 
removes a bottleneck of the system (the on-board computer that had to process all the data 
from all FPA) and distribute computing charge over all FPA-dedicated devices. Finally, a 
single component handle all memory-related functions (store and retrieve pictures taken 
by the FPA). Figure 4 illustrates the types of components used in this implementation 
while Figure 5 shows the deployment of these components with their interfaces and 
connections. 
 

 

 
Figure 4 - Physical allocation of the second implementation - type of components 



 

 

 
Figure 5 - Physical allocation - deployment of the second implementation 

 

3.2 Introduction/reminder to AADL modelling patterns 

Following sections remind the modelling patterns used to capture mission criteria, 
functional concerns and implementation specification of the system. 

3.2.1 Mission criteria with AADL system and properties 

System requirements are described in the AADL root component, a system component. 
Each requirement or criteria is specified by associating an AADL property to this 
component. 

3.2.2 Functional blocks modelling with abstract and properties 

Functional blocks are specified using an AADL system or abstract component. These are 
declared as sub-component of the AADL root system that represents the main mission 
component. As for mission criteria, these components describe their requirements using 
AADL properties. To model required communication and interfaces between functions, 
components define AADL features. Finally, please note that specialized software/hardware 
component cannot be introduced at that point.  
 



 

 

3.2.3 Refinement into implementation with specialized AADL 
components 

A generic building block corresponds to one AADL component with a specialized type (e.g: 
device, processor, process, memory, etc.). The component indicates the nature of the 
implementation (hardware or software) with its associated requirements (type of bus to be 
used as connection point, etc.). This specialized component refines the corresponding 
functional component (abstract or system) and redefines the buses connections to be used: 
the implementation component expresses its buses requirements by referencing real bus, 
not generic ones. 
 

3.3 Mapping mission criteria into AADL models 

First, we map mission criteria into an AADL models. As described in our AADL modelling 
patterns, it consists in the definition of one AADL system with appropriate properties that 
describe mission criteria. In the following system, we map these requirements: 

 Bandwidth capacity for the connection to the earth (property 
Mission_Properties::Bandwidth_To_Earth) 

 Required power to be provided to the system (property 
Physical_Properties::Total_Power) 

 Maximum mass of all system equipments (property 
Physical_Properties::Max_Mass) 

3.4 Functional design with AADL 

Each function is specified using an AADL abstract component: 
 fpa_data_get for image acquisition with FPA device 
 fpa_control for managing and controlling FPA device 
 process_data that processes data from fpa devices 
 compress_data encodes image data received from the processing function. 
 store_data interacts with the compression function and communicate with the 

data management function to store and retrieve data from the mass memory. 
 manage_memory controls the memory device and take care of all low-level 

operations 
Finally, functions and their interactions are specified using a global AADL system 

component (Gaia.Functional). It inherits the main system (the one related to mission 
criteria) and contains the following components: 

 7 fpa_data_get (one for each FPA function) 
 7 fpa_control 
 1 process_data 
 1 compress_data 
 1 store_data 

 
Then, the connections section of the Gaia.Functional system details the interactions 
between each function. 



 

 

3.5 Implementations: assembling generic blocks 

3.5.1 Generic blocks definition 

First of all, and before defining or modelling any implementation, we define generic 
components using AADL. These components would be defined by system designers when 
creating a new device/software that could be integrated into a mission. Then, they are 
reused by users: composition/aggregation of such predefined components constitute the 
system architecture by reusing existing software/hardware components. 
 

In the scope of our study, we define components to be reused in two packages (textual 
definition available in section 8.3): 

1. The library package contains generic components that are not specific to any 
domain (bus to be used in different domain and systems, etc.) 

2. The blocks package contains components specific to a particular domain (in our 
case, the space domain) but that can be reused on several missions (on-board 
software/computer that can be used on different system implementation, etc.). 

 
The library package defines the following components: 

 generic bus: corresponds to a simple bus that can interconnect function. This 
type of bus is useful when designers want to interconnect component without 
specifying the type of bus to be used. 

 spacewire bus: corresponds to the definition of a SpaceWire bus (used in the 
space domain). 

 mil1553 bus: corresponds to the specification of a MIL1553 bus. 
 can bus: corresponds to the definition of a CAN bus (mainly used in the 

automotive domain). 
 Ethernet bus with highspeed and lowspeed implementations 

 
 
The blocks package defines the following components: 

 fpa device: corresponds to a camera device that captures images of stars. 
 fpa_control device: controls the camera (takes pictures, etc.) 
 fpa_block system: assembles the fpa device and its associated controller. This 

component is a generic one; it is then available in two implementations: one with a 
runtime (on-board software) and another without any runtime. 

 fpa_block_without_runtime: extends the generic fpa_block system and does 
not make any processing on the pictures. This system is only used to send/receive 
data. It would be used in the first implementation of the architecture. 

 fpa_block_with_runtime: extends the generic fpa_block system. It also 
processes and compresses data acquired from the focal planes. It would be used in 
the second implementation of the system. 

 compress_runtime: processor that process and compress the incoming RAW data 
from an FPA device. Two implementations of this components exist: 



 

 

1. Compress_runtime_lc that has a low computation capacity. This version 
would be used in a fpa_block that embeds a runtime (second implementation 
of the architecture). 

2. Compress_runtime_hc that has a high computation capacity. This version 
would be used in a separate on-board computer to process data that is coming 
from all FPA devices. 

 obc: an on-board computer that processes and compresses data received from FPA 
devices. This component is used in the first implementation of the system. 

 Mass_memory: corresponds to the physical implementation of the memory itself 
(device that contains electronic component for data storage). 

 Memory_runtime: defines a processor and an environment to handle data 
storage/retrieval requests and is connected to the physical mass memory. 

 Memory_management: contains all the components to manage and store data. This 
component is available in two versions: 
1. Memory_management_eight_links: can be interfaced using eight links to a 

network. This version of the memory management subsystem is used in the 
second implementation of the system (connection to each fpa_block 
subsystem). 

2. Memory_management_two_links: can be interfaced using two links to a 
network. This component would be used in the specification of the first 
implementation of our system, to connect the on-board computer (obc 
component) to the memory subsystem. 

 
 

3.5.2 First implementation 

The first implementation of the gaia mission (described in section 3.1.2) is specified in the 
gaia.first_architecture AADL component implementation (see section 8.4). It relies on 
generic building blocks defined in the AADL components library (see section 8.3). Then, 
the designer/user has to reuse predefined components that already specify their 
requirements/properties. 

3.5.3 Second implementation 

The second implementation (see section 3.1.3) is defined in the gaia.second_architecture 
AADL component implementation (see section 8.4). As for the first implementation, it uses 
predefined components from the library defined before (see section 8.3). 
 



 

 

 

4 MODEL VALIDATION & DOCUMENT GENERATION 

4.1 Validation 

Figure 6 and Figure 7 show the execution of the validation theorems on both 
implementations. System architectures are processed and analyzed using two theorems: 
one for the power consumption, another for the mass. Next sections detail the execution of 
these theorems on each implementation. 

 
Figure 6 - Using REAL for the validation of the first architecture 



 

 

 
Figure 7 - REAL for the validation of the second architecture 

4.1.1 Electric consumption 

When evaluating the electric consumption of the system, the theorem reports a 
power consumption of 265W for the first architecture (20W for each fpa device, 40W for 
each on-board computer and 45W for the mass memory – total power consumption is 7 * 
20 + 2 * 40 + 45 = 265). Consequently, criteria (power consumption under 265W) are met. 

The validation of the second implementation reports a power consumption of 290W 
(35*7 + 45). Indeed, each fpa device and its associated runtime consume 35W while the 
mass memory consumes 45W. So, the validation theorem reports that mission criteria 
(power consumption under 350W) are met and does not report any error. 



 

 

4.1.2 Mass budget 

When evaluating the mass budget, validation of the first architecture fails. Indeed, 
the system is composed of 7 FPA devices (without runtimes) with a mass of 2Kg, two on-
board computers with a mass of 9Kg and one mass memory unit with a mass of 15Kg. In 
other word, the total mass of the system has a mass of 47 Kg, which is too important 
regarding mission requirements (maximum mass of 40 Kg). In that case, our analysis tool 
(REAL) reports an error, indicating that mission requirement are not met. 

The validation of the second implementation is successful: indeed, this deployment 
does not use on-board computer and use only 7 fpa devices, each one processes their data 
(3Kg for each) and send them to the mass memory subsystem (15Kg). Consequently, the 
mass of the system is 36Kg (7 * 3 + 15), which is less than mission requirements. 

4.2 Documentation & qualification/certification materials 
generation 

The document that describes the GAIA mission (reference 4) explains how to 
produce materials for certification/qualification purposes. Due to a lack of tools, 
production of such documents is still done manually by engineers. This section shows the 
accuracy of AADL to automate qualification and/or certification materials production. We 
illustrate that by demonstrating that documents produced in the initial report can be 
automatically generated from AADL models, ensuring specifications compliance. 

4.2.1 Connectivity matrix generation 

First of all, we introduce a connectivity matrix generator. It consists in the 
generation of tables that shows the connection between each subsystem. By inspecting such 
documents, designers and developers can evaluate, assess and optimize their architecture. 

The document that describes the GAIA mission (reference 4) proposes a 
connectivity matrix for the second implementation of the system. On our side, we create a 
matrix generator that creates this matrix from AADL models (see Figure 8 for the matrix of 
the first implementation and Figure 9 for the matrix of the second implementation). 

From these generated matrixes we can see that the second architecture would be 
more accurate than the second: it would require less bandwidth and use less connections 
from one component to another. 
 



 

 

 
Figure 8 - Connectivity Matrix generated from AADL models for the first implementation 

 
 

 
Figure 9 - Connectivity matrix generated from AADL models for the second implementation 

 



 

 

4.2.2 Function implementation coverage 

To provide the ability to trace the implementation components with the functional 
view, we introduce a traceability matrix between the implementation models and the 
functional models. This matrix establishes a link between components of the 
implementation and components from the functional view. By doing so, it provides a 
convenient view of the system and gives the ability to detect unimplemented function or 
components from the implementation that corresponds to nothing. 
 

However, at this time, this traceability matrix is not fully complete. In particular, the 
specification of the binding between the implementation and the functional view is not 
clear. And so, the generation rules of this traceability matrix remain unclear. In particular, 
when a component implements a particular function, how should be considered its parent 
component? Shall the matrix generator consider that the parent component implicitly 
implements the function or is this function explicitly specified in the parent component by 
the system designer? Such generation or modelling rules would have an impact on the 
modelling approach and its associated tools. 

 
Figure 10 - Functions implementation traceability for the first implementation 

 



 

 

 

5 FURTHER WORK AND PERSPECTIVES 

This section summarizes the modelling approach we propose in our approach and 
provides some perspectives and next steps to improve this development approach. 

5.1 Documentation & qualification/certification materials 
generation 

First of all, system validation (theorems to be checked by tools) as well as 
qualification/certification materials generation can be improved. In particular, other 
requirements can be checked from AADL models. This would be addressed through the 
definition of more theorems that can be processed by REAL. 

Certification/qualification materials could also be improved and more documents 
would be produced from AADL models. This would help system designers and engineers by 
automating the production of such documents and ensuring their consistency with 
specifications. 

5.2 Interface with domain-specific tools 

Another concern is the validation of the system for some specific requirements. In 
some case, validation approach such as REAL is not sufficient and it is necessary to 
interface the AADL models with domain-specific tools to analyze the system and check its 
requirements. 

For example, in the case of bus load analysis and bandwidth analysis, a precise 
validation of these aspects would require interfacing the specifications with dedicated 
analysis tools. Indeed, such validation requires to precisely knowing the behaviour of the 
bus (priority, bus sharing policy, etc) and cannot be done using a theorem-based approach. 

However, interfacing AADL models with domain-specific tools would be easily feasible 
since all required information are available in the specifications (models) and would only 
need to be exported to an appropriate representation format to be processed by specific 
tools. 
 



 

 

 

6 CONCLUSION 

This white paper is a follow-up of our previous study for the specification of avionics 
architecture (reference 3). The overall approach is then quite stable: designers first specify 
mission requirements and criteria. Then, they define system functions and their 
interaction. Finally, this function view of the system is refined into an implementation 
using specialized components that precisely describe system requirements (required 
bandwidth, computation capacity to be consumed, etc.). Finally, these models are 
processed by tools to (1) validate several requirements and (2) automatically create 
documents for qualification/certification. 

Using our methodology to design a real case-study (the GAIA mission, see reference 4) 
leads us to design tools that demonstrate the relevancy of AADL models for avionics system 
modelling and the potential automation of documents generation for 
qualification/certification. It also shows that requirements can be validated from AADL 
models. However, other system properties are very specific and would require to be 
processed by dedicated tools. In that case, it would be possible to export AADL 
specifications to an appropriate abstraction level to be analyzed and processed by these 
domain-specific tools.  
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8 TEXTUAL VERSION OF AADL MODELS 

8.1 Mission requirements and criteria 

 
system Gaia 
properties 
  Mission_Properties::Bandwidth_To_Earth => 10 Mbytesps; 
  Physical_Properties::Total_Power       => 350 W; 
  Physical_Properties::Max_Mass          => 40 Kg; 
end Gaia; 

 
 

8.2 Functions specification 

 
package GAIA::Functions 
public 
 
  with ARAM_Properties; 
  with Physical_Properties; 
  with Processor_Properties; 
  with Bus_Properties; 
 
  with GAIA; 
  with Data_Types; 
 
  ----------------------- 
  -- Mission functions -- 
  ----------------------- 
 
  -- These abstract component types define functional blocks. These 
  -- use the AADLv2 abstract component type, as these are to be later 
  -- refined as either software or hardware blocks. This is to be 
  -- decided at implementation time. 
   
  abstract fpa_data_get 
  features 
    dataout     : out data port Data_Types::fpa_data; 
    ctrlout     : out data port Data_Types::fpa_ctrl; 
  end fpa_data_get; 
 
  abstract fpa_control 
  features 
    ctrlin      : in data port Data_Types::fpa_ctrl; 
    ctrlout     : out data port Data_Types::fpa_ctrl; 
  end fpa_control; 
 



 

 

  abstract process_data 
  features 
    fpadata1    : in data port Data_Types::fpa_data; 
    fpadata2    : in data port Data_Types::fpa_data; 
    fpadata3    : in data port Data_Types::fpa_data; 
    fpadata4    : in data port Data_Types::fpa_data; 
    fpadata5    : in data port Data_Types::fpa_data; 
    fpadata6    : in data port Data_Types::fpa_data; 
    fpadata7    : in data port Data_Types::fpa_data; 
    output      : out data port Data_Types::processed_data; 
  end process_data; 
 
  abstract compress_data 
  features 
    input    : in data port Data_Types::processed_data; 
    output   : out data port Data_Types::compressed_data; 
  end compress_data; 
 
  abstract store_data 
  features 
    input    : in  data port Data_Types::compressed_data; 
    output   : out data port Data_Types::compressed_data; 
  properties 
    ARAM_Properties::Required_Memory => 800 GByte; 
  end store_data; 
 
  abstract manage_memory 
  features 
    input : in data port Data_Types::compressed_data; 
  properties 
    Processor_Properties::MIPS => 1; 
  end manage_memory; 
  -- Gaia functional design  
  -- 
  -- In this model, we propose a model that supports the function view 
  -- of the Gaia mission. 
  --  
  -- The Gaia system component type extends Mission_Criteria::Gaia, 
  -- and thus inherits its requirements, and also the validation rules 
  -- to be performed. 
  -- 
  -- The Gaia.Functionnal component implementation details how 
  -- functional blocks are to be used in this variant of the model. 
 
  system Gaia extends GAIA::Gaia 
  end Gaia; 
 
  system implementation Gaia.Functional 
  subcomponents 
    get1        :  abstract fpa_data_get; 
    get2        :  abstract fpa_data_get; 
    get3        :  abstract fpa_data_get; 
    get4        :  abstract fpa_data_get; 
    get5        :  abstract fpa_data_get; 
    get6        :  abstract fpa_data_get; 
    get7        :  abstract fpa_data_get; 



 

 

 
    ctrl1       :  abstract fpa_control; 
    ctrl2       :  abstract fpa_control; 
    ctrl3       :  abstract fpa_control; 
    ctrl4       :  abstract fpa_control; 
    ctrl5       :  abstract fpa_control; 
    ctrl6       :  abstract fpa_control; 
    ctrl7       :  abstract fpa_control; 
 
    prs_data    :  abstract process_data; 
    compress    :  abstract compress_data; 
    store       :  abstract store_data; 
 
    mem         :  abstract manage_memory; 
 
  connections 
    port get1.ctrlout -> ctrl1.ctrlin  
    {Bus_Properties::Required_Bandwidth => 20_000_000 bitsps;}; 
    port get2.ctrlout -> ctrl2.ctrlin  
    {Bus_Properties::Required_Bandwidth => 20_000_000 bitsps;}; 
    port get3.ctrlout -> ctrl3.ctrlin  
    {Bus_Properties::Required_Bandwidth => 20_000_000 bitsps;}; 
    port get4.ctrlout -> ctrl4.ctrlin  
    {Bus_Properties::Required_Bandwidth => 20_000_000 bitsps;}; 
    port get5.ctrlout -> ctrl5.ctrlin  
    {Bus_Properties::Required_Bandwidth => 20_000_000 bitsps;}; 
    port get6.ctrlout -> ctrl6.ctrlin  
    {Bus_Properties::Required_Bandwidth => 20_000_000 bitsps;}; 
    port get7.ctrlout -> ctrl7.ctrlin  
    {Bus_Properties::Required_Bandwidth => 20_000_000 bitsps;}; 
     
    port get1.dataout -> prs_data.fpadata1  
    {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;}; 
    port get2.dataout -> prs_data.fpadata2  
    {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;}; 
    port get3.dataout -> prs_data.fpadata3  
    {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;}; 
    port get4.dataout -> prs_data.fpadata4  
    {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;}; 
    port get5.dataout -> prs_data.fpadata5  
    {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;}; 
    port get6.dataout -> prs_data.fpadata6  
    {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;}; 
    port get7.dataout -> prs_data.fpadata7  
    {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;}; 
     
    port prs_data.output -> compress.input  
    {Bus_Properties::Required_Bandwidth => 140_000_000 bitsps;}; 
     
    port compress.output -> store.input  
    {Bus_Properties::Required_Bandwidth => 70_000_000 bitsps;}; 
     
    port store.output -> mem.input; 
  properties 
    Period                    => 1 ms; 
    --  XXX What is the meaning of this period? 



 

 

 
    Physical_Properties::Mass => 40 Kg; 
  end Gaia.Functional; 
   
end GAIA::Functions; 
 

 
 

8.3 Generic components 

 
-- This package models a set of generic reusable elements, outside of 
-- the space domain. 
 
-- XXX to be extended/corrected so that these elements match actual 
-- hardware/software elements. 
 
package Library 
public 
  with Bus_Properties; 
 
  ----------- 
  -- Buses -- 
  ----------- 
 
  bus generic 
  end generic; 
   
  bus genericbus extends generic 
  end genericbus; 
   
  --  SpaceWire bus 
 
  bus spacewire extends genericbus 
  end spacewire; 
   
  bus implementation spacewire.i 
  properties 
    Bus_Properties::Bus_Type     => ptp; 
    Bus_Properties::Bandwidth    => 100_000_000 bitsps; 
    Bus_Properties::Max_Latency  => 100 ms; 
  end spacewire.i; 
 
  --  MIL-STD 1553 bus 
 
  bus mil1553 extends genericbus 
  properties 
    Bus_Properties::Bus_Type     => mtp; 
    Bus_Properties::Bandwidth    => 1_000_000 bitsps; 
    Bus_Properties::Max_Latency  => 100 ms; 
  end mil1553; 
   
  bus implementation mil1553.i 
  end mil1553.i; 



 

 

 
  --  CAN Bus 
   
  bus can extends genericbus 
  properties 
    Bus_Properties::Bus_Type     => mtp; 
    Bus_Properties::Bandwidth    => 600_000 bitsps; 
    Bus_Properties::Max_Latency  => 100 ms; 
  end can; 
   
  bus implementation can.i 
  end can.i; 
   
  --  Ethernet 
 
  bus ethernet extends genericbus 
  end ethernet; 
   
  bus implementation ethernet.highspeed 
  properties 
    Bus_Properties::Bus_Type     => mtp; 
    Bus_Properties::Bandwidth    => 100_000_000 bitsps; 
    Bus_Properties::Max_Latency  => 100 ms; 
  end ethernet.highspeed; 
 
  bus implementation ethernet.lowspeed 
  properties 
    Bus_Properties::Bus_Type     => mtp; 
    Bus_Properties::Bandwidth    => 10_000_000 bitsps; 
    Bus_Properties::Max_Latency  => 100 ms; 
  end ethernet.lowspeed; 
 
end Library; 
 
 
-- This package models reusable functional blocks for space missions. 
 
package Blocks 
public 
 
  with ARAM_Properties; 
  with Physical_Properties; 
  with Bus_Properties; 
 
  with Library; 
  with GAIA::Functions; 
  with Data_Types; 
 
  --------- 
  -- FPA -- 
  --------- 
 
  device FPA 
    --  The FPA (Focal Plane Arrays) camera device corresponds to a 
    --  device that acquires/captures images of stars. 
 



 

 

  features 
    dataout : out data port Data_Types::FPA_data; 
    ctrlout : out data port Data_Types::FPA_ctrl; 
  properties 
    ARAM_Properties::Realizes => (classifier 
(GAIA::Functions::FPA_data_get)); 
  end FPA; 
   
  device implementation FPA.i 
  end FPA.i; 
 
  ----------------- 
  -- FPA_Control -- 
  ----------------- 
 
  device FPA_control 
    --  The FPA_control device corresponds to the device that controls 
    --  the camera itself (take picture, etc..) 
 
  features 
    ctrlin      : in data port Data_Types::FPA_ctrl; 
    ctrlout     : out data port Data_Types::FPA_ctrl; 
  properties 
    ARAM_Properties::Realizes => (classifier 
(GAIA::Functions::FPA_control)); 
  end FPA_control; 
   
  device implementation FPA_control.i 
  end FPA_control.i; 
 
  --------------- 
  -- FPA_block -- 
  --------------- 
 
  system FPA_block 
  --  The FPA_block component assembles both main FPA 
  --  functions: image acquisition and FPA device control. 
  features 
    bus_access : requires bus access Library::genericbus; 
  end FPA_block; 
   
  ------------------------------- 
  -- FPA_block_without_runtime -- 
  ------------------------------- 
 
  system FPA_block_without_runtime extends FPA_block 
  -- FPA_block_without_runtime contains the FPA device for image 
  -- acquisition. It sends RAW (uncompressed) data to the obc that 
  -- compresses the pictures.  This component is used for deployment 1. 
  features 
    dataout : out data port Data_Types::FPA_data; 
  end FPA_block_without_runtime; 
 
  system implementation FPA_block_without_runtime.i 
  subcomponents 
    datapart    : device FPA.i; 



 

 

    ctrlpart    : device FPA_control.i; 
 
  connections 
    port datapart.dataout -> dataout; 
    port datapart.ctrlout -> ctrlpart.ctrlin 
    {Bus_Properties::Required_Bandwidth => 20_000_000 bitsps;}; 
 
  properties 
    Physical_Properties::Mass => 2 Kg; 
    Physical_Properties::Power_Consume => 20 W; 
  end FPA_block_without_runtime.i; 
   
  ---------------------------- 
  -- FPA_block_with_runtime -- 
  ---------------------------- 
 
  system FPA_block_with_runtime extends FPA_block 
  -- FPA_block_with_runtime contains the FPA device for image 
  -- acquisition, the FPA_control to control the FPA device as well as 
  -- a runtime that compress the raw data from the FPA device. Then, 
  -- the runtime sends directly the compressed data to the mass memory 
  -- subsystem.  This component is used for deployment 2. 
   
  features 
    output : out data port Data_Types::compressed_data; 
  end FPA_block_with_runtime; 
   
  system implementation FPA_block_with_runtime.i 
  subcomponents 
    datapart    : device FPA.i; 
    ctrlpart    : device FPA_control.i; 
    processing  : processor compress_runtime_lc.i; 
 
  connections 
    port datapart.dataout -> processing.raw; 
    port datapart.ctrlout -> ctrlpart.ctrlin  
    {Bus_Properties::Required_Bandwidth => 20_000_000 bitsps;}; 
 
    bus access bus_access -> processing.bus_access; 
 
  properties 
    Physical_Properties::Mass => 3 Kg; 
    Physical_Properties::Power_Consume => 35 W; 
  end FPA_block_with_runtime.i; 
 
  ---------------------- 
  -- Compress_Runtime -- 
  ---------------------- 
 
  processor compress_runtime 
    --  The compress_runtime component is the processor used to 
    --  compress the incoming raw data from the FPA device. 
 
  features 
    bus_access : requires bus access Library::genericbus; 
 



 

 

  properties 
    ARAM_Properties::Realizes =>  
    (classifier (GAIA::Functions::compress_data), 
     classifier (GAIA::Functions::process_data)); 
  end compress_runtime; 
   
  processor compress_runtime_hc extends compress_runtime 
    -- compress_runtime_hc means "High Capacity": it has a high 
    -- computation capacity to compress incoming raw data from all FPA 
    -- devices.  It is used in deployment 1 as a processor in the obc 
    -- subsystem. 
  features 
    FPAdata1       : in data port Data_Types::FPA_data; 
    FPAdata2       : in data port Data_Types::FPA_data; 
    FPAdata3       : in data port Data_Types::FPA_data; 
    FPAdata4       : in data port Data_Types::FPA_data; 
    FPAdata5       : in data port Data_Types::FPA_data; 
    FPAdata6       : in data port Data_Types::FPA_data; 
    FPAdata7       : in data port Data_Types::FPA_data; 
    compressed     : out data port Data_Types::compressed_data; 
  end compress_runtime_hc; 
   
  processor implementation compress_runtime_hc.i 
  end compress_runtime_hc.i; 
   
  processor compress_runtime_lc extends compress_runtime 
    -- compress_runtime_lc means "Low Capacity": it has a low 
    -- computation capacity and is embedded in the 
    -- FPA_block_with_runtime subsystem. It has a lower computation 
    -- capacity because it compresses only one picture at the same 
    -- time whereas the High Capacity version must compress 8 pictures 
    -- with the same deadline.  This version is used in deployment 2. 
 
  features 
    raw        : in data port Data_Types::FPA_data; 
    compressed : out data port Data_Types::compressed_data; 
  end compress_runtime_lc; 
   
  processor implementation compress_runtime_lc.i 
  end compress_runtime_lc.i; 
 
  --------- 
  -- OBC -- 
  --------- 
   
  system obc 
  --  The obc subsystem corresponds to the computer that compresses 
  --  the incoming raw data from the 8 FPA devices. Its implementation 
  --  contains a high capacity processing resources, able to compress 
  --  all pictures with a tight timing constraint (1ms).  Two 
  --  processor are used to introduce redundancy. 
  -- 
  --  This subsystem is used in deployment 1. 
  features 
    bus_access  : requires bus access Library::genericbus; 
    rawdata1    : in data port Data_Types::FPA_data; 



 

 

    rawdata2    : in data port Data_Types::FPA_data; 
    rawdata3    : in data port Data_Types::FPA_data; 
    rawdata4    : in data port Data_Types::FPA_data; 
    rawdata5    : in data port Data_Types::FPA_data; 
    rawdata6    : in data port Data_Types::FPA_data; 
    rawdata7    : in data port Data_Types::FPA_data; 
    rawdata8    : in data port Data_Types::FPA_data; 
    compressed  : out data port Data_Types::compressed_data ; 
  end obc; 
   
  system implementation obc.i 
  subcomponents 
    computer1 : processor compress_runtime_hc.i; 
    computer2 : processor compress_runtime_hc.i; 
 
  connections 
    bus access bus_access -> computer1.bus_access; 
    bus access bus_access -> computer2.bus_access; 
 
  properties 
    Physical_Properties::Mass => 9 Kg; 
    Physical_Properties::Power_Consume => 40 W; 
  end obc.i; 
 
  ----------------- 
  -- Mass_Memory -- 
  ----------------- 
 
  memory mass_memory 
  --  The mass_memory component corresponds to the memory device used 
  --  to store and retrieve pictures. It is the memory device that 
  --  contains all the compressed data produced by either the on board 
  --  computer or the FPA subsystem block. 
 
  features 
    bus_access : requires bus access Library::genericbus; 
  end mass_memory; 
   
  memory implementation mass_memory.i 
  properties 
    ARAM_Properties::Realizes => (classifier 
(GAIA::Functions::manage_memory)); 
  end mass_memory.i; 
 
  -------------------- 
  -- Memory_Runtime -- 
  -------------------- 
 
  processor memory_runtime 
  --  The memory_runtime processor is used on the memory subsystem to 
  --  allocate memory and organize the memory organization of the 
  --  hardware part of the memory. 
 
  features 
    bus_access  : requires bus access Library::genericbus; 
    input       : in data port Data_Types::compressed_data; 



 

 

  properties 
    ARAM_Properties::Realizes => (classifier 
(GAIA::Functions::store_data)); 
  end memory_runtime; 
   
  processor implementation memory_runtime.i 
  end memory_runtime.i; 
 
  ----------------------- 
  -- Memory_Management -- 
  ----------------------- 
 
  system memory_management 
  --  The memory_management component gathers all components required 
  --  for the implementation of the memory subsystem.  It contains the 
  --  hardware part of the memory itself the mass_memory memory 
  --  component as well as the runtime that controls it - the 
  --  memory_runtime component).   
  -- 
  --  In deployment 1, it is connected to the obc that sends processed 
  --  and compressed data. 
  -- 
  --  In deployment 2, it is connected to FPA subsystems that sends 
  --  directly compressed data. For communication purposes, this 
  --  subsystem requires a connection to a bus. 
 
  features 
    bus_access  : requires bus access Library::genericbus; 
    to_cdmu     : out data port Data_Types::compressed_data; 
  
  properties 
    ARAM_Properties::Required_Memory => 800 GByte; 
  end memory_management; 
   
  system memory_management_two_links extends memory_management 
  features 
    link1 : in data port Data_Types::compressed_data; 
    link2 : in data port Data_Types::compressed_data; 
  end memory_management_two_links; 
 
  system memory_management_eight_links extends memory_management 
  features 
    link1 : in data port Data_Types::compressed_data; 
    link2 : in data port Data_Types::compressed_data; 
    link3 : in data port Data_Types::compressed_data; 
    link4 : in data port Data_Types::compressed_data; 
    link5 : in data port Data_Types::compressed_data; 
    link6 : in data port Data_Types::compressed_data; 
    link7 : in data port Data_Types::compressed_data; 
    link8 : in data port Data_Types::compressed_data; 
  end memory_management_eight_links; 
   
  system implementation memory_management_two_links.i 
  subcomponents 
    mm      : memory mass_memory.i; 
    runtime : processor memory_runtime.i; 



 

 

 
  connections 
    bus access bus_access -> runtime.bus_access; 
 
  properties 
    Physical_Properties::Mass => 15 Kg; 
    Physical_Properties::Power_Consume => 45 W; 
  end memory_management_two_links.i; 
   
  system implementation memory_management_eight_links.i 
  subcomponents 
    mm      : memory mass_memory.i; 
    runtime : processor memory_runtime.i; 
 
  connections 
    bus access bus_access -> runtime.bus_access; 
  properties 
    Physical_Properties::Mass => 15 Kg; 
    Physical_Properties::Power_Consume => 45 W; 
  end memory_management_eight_links.i; 
   
end Blocks; 

 
 
 

8.4 System implementations 

 
 

-- This package models alternatives for the Gaia implementation 
-- design. 
 
package GAIA::Implementations 
public 
 
  with ARAM_Properties; 
  with Bus_Properties; 
 
  with Blocks; 
  with Library; 
  with GAIA; 
  with GAIA::Functions; 
   
  -- Gaia implementation design  
  -- 
  -- In this model, we propose a model that supports the 
  -- implementation view of the Gaia mission. 
  --  
  -- The Gaia system component type extends Gaia::Gaia, and thus 
  -- inherits its requirements, and also the validation rules to be 
  -- checked. 
 
  system Gaia extends GAIA::Gaia 
  end Gaia; 



 

 

 
  ------------------------------------------------------------------------
----- 
  -- Gaia candidate design #1 
  --  This design corresponds to the first iteration, with the 
  --  following functions: 
  --  * 7 couples of (Get_Data + Ctrl FPA) units, made redundant using 
  --  a N + 1/N scheme 
  --    => hence 8 functions, named U1_1 to U1_8 
  --  * 1 couple of (Process Data + Compress Data), duplicated 
  --    => hence 2 functions, named U2_1 and U2_2 
  --  * 1 mass memory unit, named U3_1 
 
  system implementation gaia.first_architecture 
  subcomponents 
 
    -- From the design document, one can infere that 
 
    -- * U1 units are pure hardware, using one board,  
    --   consumes 20W, requires 600MIPs, weight 2Kg 
 
    U1_1 : system blocks::fpa_block_without_runtime.i; 
    U1_2 : system blocks::fpa_block_without_runtime.i; 
    U1_3 : system blocks::fpa_block_without_runtime.i; 
    U1_4 : system blocks::fpa_block_without_runtime.i; 
    U1_5 : system blocks::fpa_block_without_runtime.i; 
    U1_6 : system blocks::fpa_block_without_runtime.i; 
    U1_7 : system blocks::fpa_block_without_runtime.i; 
 
    --    U1_8 : system blocks::fpa_block_without_runtime.i; 
    -- Note: this component is added to follow the N + 1/N redundancy 
    -- pattern. It is disabled for now. 
 
    -- * U2 units are OBCs, 4200 MIPs, cycle time range of 1ms, 
    --   consumes 40W, weights 9Kg. 
 
    U2_1 : system blocks::obc.i; 
    U2_2 : system blocks::obc.i; 
 
    -- * U3 unit is a mass memory. We select the two links variant, as 
    --   this memory is to be connected to U2 units. It requires 
    --   1MIPS, consumes 45W, weights 15kg. 
 
    U3_1 : system blocks::memory_management_two_links.i; 
     
    transportlayer : bus Library::genericbus; 
 
    -- Evaluation results: 
    --  total weight: 7 * 2 + 2 * 9 + 15 = 47 kg 
    --  total power:  7 * 20 + 2 * 40 + 45 = 265 W 
 
  connections 
    -- Each U1 unit is connected to the two U2 units 
 
    port U1_1.dataout -> U2_1.rawdata1 
    {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps; 



 

 

    Actual_Connection_Binding => (reference (transportlayer));}; 
    port U1_2.dataout -> U2_1.rawdata2 
    {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps; 
    Actual_Connection_Binding => (reference (transportlayer));}; 
    port U1_3.dataout -> U2_1.rawdata3 
    {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps; 
    Actual_Connection_Binding => (reference (transportlayer));}; 
    port U1_4.dataout -> U2_1.rawdata4 
    {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;  
    Actual_Connection_Binding => (reference (transportlayer));}; 
    port U1_5.dataout -> U2_1.rawdata5  
    {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;  
    Actual_Connection_Binding => (reference (transportlayer));}; 
    port U1_6.dataout -> U2_1.rawdata6  
    {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;  
    Actual_Connection_Binding => (reference (transportlayer));}; 
    port U1_7.dataout -> U2_1.rawdata7  
    {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;  
    Actual_Connection_Binding => (reference (transportlayer));}; 
    -- port U1_8.dataout -> U2_1.rawdata8 
    -- {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;  
    -- Actual_Connection_Binding => (reference (transportlayer));}; 
 
    port U1_1.dataout -> U2_2.rawdata1  
    {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;  
    Actual_Connection_Binding => (reference (transportlayer));}; 
    port U1_2.dataout -> U2_2.rawdata2 
    {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;  
    Actual_Connection_Binding => (reference (transportlayer));}; 
    port U1_3.dataout -> U2_2.rawdata3 
    {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;  
    Actual_Connection_Binding => (reference (transportlayer));}; 
    port U1_4.dataout -> U2_2.rawdata4  
    {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;  
    Actual_Connection_Binding => (reference (transportlayer));}; 
    port U1_5.dataout -> U2_2.rawdata5  
    {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;  
    Actual_Connection_Binding => (reference (transportlayer));}; 
    port U1_6.dataout -> U2_2.rawdata6 
    {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;  
    Actual_Connection_Binding => (reference (transportlayer));}; 
    port U1_7.dataout -> U2_2.rawdata7 
    {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;  
    Actual_Connection_Binding => (reference (transportlayer));}; 
    -- port U1_8.dataout -> U2_2.rawdata8 
    -- {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;  
    -- Actual_Connection_Binding => (reference (transportlayer));}; 
     
    port U2_1.compressed -> U3_1.link1 
    {Bus_Properties::Required_Bandwidth  => 70_000_000 bitsps;  
    Actual_Connection_Binding => (reference (transportlayer));}; 
    port U2_2.compressed -> U3_1.link2 
    {Bus_Properties::Required_Bandwidth  => 70_000_000 bitsps;  
    Actual_Connection_Binding => (reference (transportlayer));}; 
     
    bus access transportlayer -> U3_1.bus_access; 



 

 

     
    bus access transportlayer -> U2_1.bus_access; 
    bus access transportlayer -> U2_2.bus_access; 
     
    bus access transportlayer -> U1_1.bus_access; 
    bus access transportlayer -> U1_2.bus_access; 
    bus access transportlayer -> U1_3.bus_access; 
    bus access transportlayer -> U1_4.bus_access; 
    bus access transportlayer -> U1_5.bus_access; 
    bus access transportlayer -> U1_6.bus_access; 
    bus access transportlayer -> U1_7.bus_access; 
    -- bus access transportlayer -> U1_8.bus_access; 
  end gaia.first_architecture; 
 
  ------------------------------------------------------------------------
----- 
  -- Gaia candidate design #2 
  --  This design corresponds to the second iteration, with the 
  --  following functions: 
  --  * 7 couples of (Get_Data + Ctrl FPA + compress + process) units, 
  --  made redundant using a N + 1/N scheme 
  --  * 1 mass memory unit, named U3_1 
 
  system implementation gaia.second_architecture 
  subcomponents 
 
    -- From the design document, one can infere that 
 
    -- * U1 units are pure hardware, using one board,  
    --   consumes 35W, requires 600MIPs, weight 3Kg 
 
    U1_1 : system blocks::fpa_block_with_runtime.i; 
    U1_2 : system blocks::fpa_block_with_runtime.i; 
    U1_3 : system blocks::fpa_block_with_runtime.i; 
    U1_4 : system blocks::fpa_block_with_runtime.i; 
    U1_5 : system blocks::fpa_block_with_runtime.i; 
    U1_6 : system blocks::fpa_block_with_runtime.i; 
    U1_7 : system blocks::fpa_block_with_runtime.i; 
    -- U1_8 : system blocks::fpa_block_with_runtime.i; 
 
    -- * U2 units requires 1 MIPs consumes 45W, weights 15Kg. 
 
    U2_1   : system blocks::memory_management_eight_links.i; 
 
    transportlayer : bus Library::genericbus; 
 
    -- Evaluation results: 
    --  total weight: 7 * 3 + 1 * 15 = 36 kg 
    --  total power:  7 * 35 + 45 = 290 W 
 
  connections 
    port U1_1.output -> U2_1.link1 
    {Bus_Properties::Required_Bandwidth  => 10_000_000 bitsps;  
     Actual_Connection_Binding => (reference (transportlayer));}; 
    port U1_2.output -> U2_1.link2  
    {Bus_Properties::Required_Bandwidth  => 10_000_000 bitsps;  



 

 

     Actual_Connection_Binding => (reference (transportlayer));}; 
    port U1_3.output -> U2_1.link3  
    {Bus_Properties::Required_Bandwidth  => 10_000_000 bitsps;  
     Actual_Connection_Binding => (reference (transportlayer));}; 
    port U1_4.output -> U2_1.link4  
    {Bus_Properties::Required_Bandwidth  => 10_000_000 bitsps;  
     Actual_Connection_Binding => (reference (transportlayer));}; 
    port U1_5.output -> U2_1.link5 
    {Bus_Properties::Required_Bandwidth  => 10_000_000 bitsps; 
     Actual_Connection_Binding => (reference (transportlayer));}; 
    port U1_6.output -> U2_1.link6 
    {Bus_Properties::Required_Bandwidth  => 10_000_000 bitsps; 
     Actual_Connection_Binding => (reference (transportlayer));}; 
    port U1_7.output -> U2_1.link7  
    {Bus_Properties::Required_Bandwidth  => 10_000_000 bitsps;  
     Actual_Connection_Binding => (reference (transportlayer));}; 
    -- port U1_8.output -> U2_1.link8 
    -- {Bus_Properties::Required_Bandwidth  => 10_000_000 bitsps; 
    --  Actual_Connection_Binding => (reference (transportlayer));}; 
 
     
    bus access transportlayer -> U2_1.bus_access; 
     
    bus access transportlayer -> U1_1.bus_access; 
    bus access transportlayer -> U1_2.bus_access; 
    bus access transportlayer -> U1_3.bus_access; 
    bus access transportlayer -> U1_4.bus_access; 
    bus access transportlayer -> U1_5.bus_access; 
    bus access transportlayer -> U1_6.bus_access; 
    bus access transportlayer -> U1_7.bus_access; 
    -- bus access transportlayer -> U1_8.bus_access; 
  end gaia.second_architecture; 
 
end GAIA::Implementations; 

 

9 DEFINITION OF NEW AADL PROPERTIES 

9.1 Mission Properties 
-- This package defines properties for defining space mission 
-- objectives and requirements. 
 
property set Mission_Properties is 
 
  -------------------- 
  -- Mission Timing -- 
  -------------------- 
 
  Mission_Time_Units: type units  
  (ps,  
  ns   => ps  * 1000,  
  us   => ns  * 1000,  
  ms   => us  * 1000, 



 

 

  sec  => ms  * 1000,  
  min  => sec * 60, 
  hr   => min * 60, 
  day  => hr  * 24, 
  week => day * 7); 
   
  Mission_Max_Time: constant Mission_Duration_Type => 1000 week; 
   
  Mission_Duration_Type: type aadlinteger 0 ps .. Mission_Max_Time  
  units Mission_Time_Units; 
   
  Mission_Duration : inherit Mission_Duration_Type applies to (system); 
 
  -------------------------------- 
  -- Communication requirements -- 
  -------------------------------- 
 
  Bandwidth_To_Earth : Data_Volume applies to (abstract, system, device, 
bus); 
 
end Mission_Properties; 

 
 

9.2 Physical Properties 
-- This package defines some units related to physics of systems. 
 
property set Physical_Properties is 
 
  ----------------- 
  -- Power units -- 
  ----------------- 
 
  Power_Units: type units  
  (W,  
   KW  => W * 1000, 
   MW  => KW * 1000,  
   GW  => MW * 1000, 
   TW  => GW * 1000); 
   
  Max_Power: constant Power_Units => 2#1#e32 W; 
  Power : type aadlreal 0 W .. Max_Power units Power_Units; 
  Power_Consume : Power applies to (processor, device, memory, system); 
  Power_Provide : Power applies to (device); 
  Total_Power   : Power applies to (system); 
   
  --------- 
  -- EMC -- 
  --------- 
 
  Ionizing_Dose_Units : type units ( 
  rad,  
  Krad  => rad * 1000, 
  Mrad  => Krad * 1000,  
  Grad  => Mrad * 1000, 



 

 

  Trad  => Grad * 1000); 
   
  Max_Ionizing_Dose: constant Ionizing_Dose_Units => 2#1#e32 rad; 
   
  Ionizing_Type : type aadlinteger  
     0 rad .. Max_Ionizing_Dose units Ionizing_Dose_Units; 
   
  TID : Ionizing_Type applies to (processor, device, memory); 
 
  ---------------- 
  -- Mass units -- 
  ---------------- 
 
  Mass_Units: type units ( 
  g,  
  Kg => g  * 1000,  
  T  => Kg * 1000); 
 
  Maximum_Mass: constant Mass_Units => 2#1#e32 g; 
 
  Mass_Type : type aadlreal 0 g .. Maximum_Mass units Mass_Units; 
 
  Mass : Mass_Type applies to (processor, device, memory, system); 
  -- Define the mass of an element. Note: if both a system and its 
  -- subcomponents define a mass, then it is assumed that the mass of 
  -- the system should be more or equal to the sum of the mass of its 
  -- subcomponents. 
   
  Max_Mass : Mass_Type applies to (processor, device, memory, system); 
 
end Physical_Properties; 

 
 
 

9.3 Processor Properties 
property set Processor_Properties is 
 
  Frequency : type aadlinteger 0 Hz .. Max_Aadlinteger units  
  (Hz, 
  KHz => Hz  * 1000, 
  MHz => KHz * 1000, 
  GHz => MHz * 1000); 
   
  CPU_Speed : Frequency applies to (processor);  
  MIPS : aadlinteger 0 .. Max_Aadlinteger applies to (processor, 
abstract);  
end Processor_Properties; 

9.4 Bus Properties 
property set Bus_Properties is 
 
  Required_Bandwidth : Data_Volume applies to  



 

 

    (abstract, system, device, bus access, connection); 
 
  Bandwidth : Data_Volume applies to (abstract, system, device, bus); 
 
  Bus_Type : enumeration (mtp, ptp) applies to (bus, system, abstract); 
  --  mtp: multi-point bus 
  --  ptp: point-to-point bus 
 
  Expected_Latency : Time_Range applies to (bus, bus access, abstract); 
 
  Max_Latency : Time applies to (bus, bus access, abstract); 
 
end Bus_Properties; 

9.5 Dedicated ARAM Properties 
 
property set ARAM_Properties is 
 
  Required_Memory : inherit Size applies to  
    (system, abstract, device, processor); 
 
  Minimum_Size : inherit Size applies to (memory, abstract); 
 
  Realizes : inherit list of classifier (abstract, system) applies to  
    (processor, bus, device, abstract, memory, process); 
  --  In our modeling patterns, we use AADLv2 abstract components to 
  --  model Java-like interfaces, i.e. a set of services to be 
  --  implemented. The Realizes functions indicates which interface is 
  --  implemented by a concrete component type 
 
  Actual_Function_Binding : inherit list of reference (abstract, system)  
    applies to (processor, bus, device, abstract, memory, process); 
  --  Define the binding of abstract function to actual implementations.  
 
end ARAM_Properties;  
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