

Modelling Hardware Avionics Architecture with AADL

Julien Delange – julien.delange@esa.int
Jérôme Hugues – jerome.hugues@isae.fr

1 RATIONALE

This document presents an approach for the modelling of hardware concerns of
avionics architecture. This is a follow-up of a previous paper (published in the scope of an
AADL standardization committee - see reference 3) that described our preliminary
investigations on avionics architecture modelling. It introduced our overall design method,
to go from mission criteria and mission functions definition to system implementation
specification.

This new document goes beyond this initial study and details how we can apply our

methodology on a real mission (GAIA, an earth observation mission, see reference 4). In
particular, it explains how we can use models to validate system requirements and
automatically produce materials for validation, verification or analysis purposes. In
consequence, it focuses on:

1. Model validation: validation to be done by appropriate tools to ensure that
requirements defined at a functional level are enforced in the implementation.

2. Model usage: how models can be used by appropriate tools to produce
documentation such as traceability information, etc.

Finally, we also propose some guidelines about potential further work and investigation

to be done in the context of avionics system modelling with the AADL.

Next sections constitute a short reminder about the overall design approach and then,
introduce the mapping of the GAIA mission to AADL models.

mailto:julien.delange@esa.int
mailto:jerome.hugues@isae.fr

2 DESIGN APPROACH & APPROACH - REMINDER

2.1 Overall presentation

The main goal is to help system designers to asses their architecture, evaluate and find
potential errors or requirements trade-offs at the earliest during development, saving
time/money (see reference 5), improving development process reliability and increasing
confidence in produced applications.

Resulting design process (illustrated in Figure 1) focuses on the following phases:
1. Specify mission criteria and functions with a dedicated formalism. Mission

criteria represent requirements to be met (mission duration, maximum weight, etc.)
; functions specify what is achieved by the system (star tracking, observation, etc.).
At this step, implementation concerns are not considered.

2. Refine the functional architecture by specifying its implementation using
predefined building blocks. These blocks specify their requirements (computation
capacity, weight, power, etc.) so that produced models are amenable for analysis.

3. Validate the implementation against the functional description and
mission criteria. Analysis tools check the models evaluate and compare their
requirements. In particular, they check for requirements correctness and constraints
enforcement (e.g.: a processor provides sufficient computing capacity for the
execution of its associated programs).

Functional architecture

Implementation
(processor, bus to be

Refinement with
generic building blocks

Automatic validation of mission
requirements

Mission requirements
(duration, mass, etc.)

Build and implement
the system

Criteria and/or
architecture modification

Validation OK Validation KO

Update
models

Step 3

Step 2 Step 1

Figure 1 - Design approach

To model mission criteria, the functional architecture and planned implementation,
the AADL language is used as the backbone language. It provides a level of abstraction
suitable to software and hardware modelling and offers several extensions mechanisms,
which ease its adaptation to different modelling approaches. In our context, we tailor the
AADL modelling language to our needs by extending it with analysis methods or new
properties.

This design approach is iterative, in the sense that designers can describe system
architecture in a functional sense, without having to specify all characteristics of the
system. Then, during the refinement process, components are replaced by generic building
blocks that contain all properties and requirements so that validation tools can analyze and
assess system feasibility. The following picture illustrates the relation between the details
level and the evolution of the design process.

2.2 Benefits of this approach

By using this methodology, designers would expect:
 Faster design process by reusing predefined building blocks with predefined

requirements definition
 Reliable and robust system analysis that relies on automatic analysis tools
 Saving time in system validation by using automatic analysis tools

As this process automates many aspects of system design and so, avoids, all human-

related error, designers would expect to gain time and efforts when designing a system.
Benefits of such an approach were already discussed in the context of the SAVI project (see
reference 5).

3 APPLY DESIGN APPROACH TO THE GAIA MISSION

We apply our design approach to the GAIA mission. A recent report (reference 4) details
how to improve the development process of space mission, applying their methodology to
the GAIA mission. This report focuses on components reuse, certification/qualification
materials production and system validation (enforcement of expected requirements).

This study also depicts the lack of existing tool for the automation of the
development process so that designers/engineers still have to design the system by
themselves and check requirements manually. Our current investigations demonstrate how
system modelling technologies and more specifically AADL can be tailored in that purpose.

In consequence, we reuse this existing study, map system definition and
requirements in AADL and discuss how we can automate each development step using the
AADL.

Next sections are organized as follow:

1. Description of the GAIA mission from the preliminary study
2. Reminder of our AADL modelling patterns
3. Application of our AADL-specific methodology on the GAIA mission

3.1 GAIA Mission Overview and mission criteria

The GAIA mission consists in taking pictures of stars (1 billion stars). The original report
lists the following mission requirements/criteria:

 Capture and process stars pictures
 Store and compress data to be stored in the mass memory
 Transmit pictures to the ground with a predictable guaranteed % of

collected data
 Keep thermal balance of payload cavity
 Implement smooth degradation over 5 years mission

3.1.1 Functional decomposition

To meet mission criteria, the following functions are defined:
1. Get data from FPA (Focal Plane Array, an image-sensing device) (7 raws, 7x50

Mbps)
2. Control FPA for star tracking
3. Process raw data from FPA (images that are taken) for building packets (data

reduction algorithm: 7 x 600 Mbps)
4. Compress data lossless (allocation: 5% of overall processing)
5. Store data and manage memory (optimal allocation and downlink scheduling)

In addition, the following requirements have to be met by the mission:
1. Cycle time: 1ms
2. Constant thermal load
3. Smooth degradation

The following picture illustrates the decomposition of the system into functions:

1. First, two functions are dedicated to FPA devices:
a. One function gets data from each device and sends it to a main system that

gathers and processes them.
b. One function controls it (change orientation, etc.)

2. One function receives the data from all FPA and sends them to be compressed.
3. One function performs data compression (in order to reduce the memory required

to store the pictures) and send the result to be stored in the mass memory.
4. Two functions care about memory concerns :

a. One manage the hardware memory itself
b. One issues commands to store/retrieve data from/to the memory.

3.1.2 First implementation: data-centralized on an OBC platform

In this first implementation, system is divided in three types of blocks (see figure 2):
1. The FPA management (the ones that gather data from the FPA and controls it) for

each FPA are implemented in one physical block. This is a specific device that
receives data from the camera and has the ability to send specific order to it. There
are 7 devices like this one in this architecture.

2. The processing functions (that receive data and compress them) are implemented in
one block, an on-board computer that receives data from the FPA handling devices
and compress them.

3. The memory-related functions are also allocated to a common hardware component
that manages the memory and store/retrieve data.

Figure 2 show the physical allocation from a logical point of view with the definition of the
three types of allocation: one related to FPA functions, another to data processing and
compression and another that cares about data storage. On the other hand, Figure 3
depicts the deployment of this implementation and the different nodes involved in this
design.

Figure 2 - Physical allocation of the first implementation - type of components

Figure 3 - Physical allocation of the first implementation - deployment

3.1.3 Second implementation: processing separation on FPA devices

The second implementation is an optimization of the first one, removing the on-board
computer that processes and compresses data from the FPA devices. Instead, each device
that handles FPA data process and compress the data it received by itself. By doing so, it
removes a bottleneck of the system (the on-board computer that had to process all the data
from all FPA) and distribute computing charge over all FPA-dedicated devices. Finally, a
single component handle all memory-related functions (store and retrieve pictures taken
by the FPA). Figure 4 illustrates the types of components used in this implementation
while Figure 5 shows the deployment of these components with their interfaces and
connections.

Figure 4 - Physical allocation of the second implementation - type of components

Figure 5 - Physical allocation - deployment of the second implementation

3.2 Introduction/reminder to AADL modelling patterns

Following sections remind the modelling patterns used to capture mission criteria,
functional concerns and implementation specification of the system.

3.2.1 Mission criteria with AADL system and properties

System requirements are described in the AADL root component, a system component.
Each requirement or criteria is specified by associating an AADL property to this
component.

3.2.2 Functional blocks modelling with abstract and properties

Functional blocks are specified using an AADL system or abstract component. These are
declared as sub-component of the AADL root system that represents the main mission
component. As for mission criteria, these components describe their requirements using
AADL properties. To model required communication and interfaces between functions,
components define AADL features. Finally, please note that specialized software/hardware
component cannot be introduced at that point.

3.2.3 Refinement into implementation with specialized AADL
components

A generic building block corresponds to one AADL component with a specialized type (e.g:
device, processor, process, memory, etc.). The component indicates the nature of the
implementation (hardware or software) with its associated requirements (type of bus to be
used as connection point, etc.). This specialized component refines the corresponding
functional component (abstract or system) and redefines the buses connections to be used:
the implementation component expresses its buses requirements by referencing real bus,
not generic ones.

3.3 Mapping mission criteria into AADL models

First, we map mission criteria into an AADL models. As described in our AADL modelling
patterns, it consists in the definition of one AADL system with appropriate properties that
describe mission criteria. In the following system, we map these requirements:

 Bandwidth capacity for the connection to the earth (property
Mission_Properties::Bandwidth_To_Earth)

 Required power to be provided to the system (property
Physical_Properties::Total_Power)

 Maximum mass of all system equipments (property
Physical_Properties::Max_Mass)

3.4 Functional design with AADL

Each function is specified using an AADL abstract component:
 fpa_data_get for image acquisition with FPA device
 fpa_control for managing and controlling FPA device
 process_data that processes data from fpa devices
 compress_data encodes image data received from the processing function.
 store_data interacts with the compression function and communicate with the

data management function to store and retrieve data from the mass memory.
 manage_memory controls the memory device and take care of all low-level

operations
Finally, functions and their interactions are specified using a global AADL system

component (Gaia.Functional). It inherits the main system (the one related to mission
criteria) and contains the following components:

 7 fpa_data_get (one for each FPA function)
 7 fpa_control
 1 process_data
 1 compress_data
 1 store_data

Then, the connections section of the Gaia.Functional system details the interactions
between each function.

3.5 Implementations: assembling generic blocks

3.5.1 Generic blocks definition

First of all, and before defining or modelling any implementation, we define generic
components using AADL. These components would be defined by system designers when
creating a new device/software that could be integrated into a mission. Then, they are
reused by users: composition/aggregation of such predefined components constitute the
system architecture by reusing existing software/hardware components.

In the scope of our study, we define components to be reused in two packages (textual
definition available in section 8.3):

1. The library package contains generic components that are not specific to any
domain (bus to be used in different domain and systems, etc.)

2. The blocks package contains components specific to a particular domain (in our
case, the space domain) but that can be reused on several missions (on-board
software/computer that can be used on different system implementation, etc.).

The library package defines the following components:

 generic bus: corresponds to a simple bus that can interconnect function. This
type of bus is useful when designers want to interconnect component without
specifying the type of bus to be used.

 spacewire bus: corresponds to the definition of a SpaceWire bus (used in the
space domain).

 mil1553 bus: corresponds to the specification of a MIL1553 bus.
 can bus: corresponds to the definition of a CAN bus (mainly used in the

automotive domain).
 Ethernet bus with highspeed and lowspeed implementations

The blocks package defines the following components:

 fpa device: corresponds to a camera device that captures images of stars.
 fpa_control device: controls the camera (takes pictures, etc.)
 fpa_block system: assembles the fpa device and its associated controller. This

component is a generic one; it is then available in two implementations: one with a
runtime (on-board software) and another without any runtime.

 fpa_block_without_runtime: extends the generic fpa_block system and does
not make any processing on the pictures. This system is only used to send/receive
data. It would be used in the first implementation of the architecture.

 fpa_block_with_runtime: extends the generic fpa_block system. It also
processes and compresses data acquired from the focal planes. It would be used in
the second implementation of the system.

 compress_runtime: processor that process and compress the incoming RAW data
from an FPA device. Two implementations of this components exist:

1. Compress_runtime_lc that has a low computation capacity. This version
would be used in a fpa_block that embeds a runtime (second implementation
of the architecture).

2. Compress_runtime_hc that has a high computation capacity. This version
would be used in a separate on-board computer to process data that is coming
from all FPA devices.

 obc: an on-board computer that processes and compresses data received from FPA
devices. This component is used in the first implementation of the system.

 Mass_memory: corresponds to the physical implementation of the memory itself
(device that contains electronic component for data storage).

 Memory_runtime: defines a processor and an environment to handle data
storage/retrieval requests and is connected to the physical mass memory.

 Memory_management: contains all the components to manage and store data. This
component is available in two versions:
1. Memory_management_eight_links: can be interfaced using eight links to a

network. This version of the memory management subsystem is used in the
second implementation of the system (connection to each fpa_block
subsystem).

2. Memory_management_two_links: can be interfaced using two links to a
network. This component would be used in the specification of the first
implementation of our system, to connect the on-board computer (obc
component) to the memory subsystem.

3.5.2 First implementation

The first implementation of the gaia mission (described in section 3.1.2) is specified in the
gaia.first_architecture AADL component implementation (see section 8.4). It relies on
generic building blocks defined in the AADL components library (see section 8.3). Then,
the designer/user has to reuse predefined components that already specify their
requirements/properties.

3.5.3 Second implementation

The second implementation (see section 3.1.3) is defined in the gaia.second_architecture
AADL component implementation (see section 8.4). As for the first implementation, it uses
predefined components from the library defined before (see section 8.3).

4 MODEL VALIDATION & DOCUMENT GENERATION

4.1 Validation

Figure 6 and Figure 7 show the execution of the validation theorems on both
implementations. System architectures are processed and analyzed using two theorems:
one for the power consumption, another for the mass. Next sections detail the execution of
these theorems on each implementation.

Figure 6 - Using REAL for the validation of the first architecture

Figure 7 - REAL for the validation of the second architecture

4.1.1 Electric consumption

When evaluating the electric consumption of the system, the theorem reports a
power consumption of 265W for the first architecture (20W for each fpa device, 40W for
each on-board computer and 45W for the mass memory – total power consumption is 7 *
20 + 2 * 40 + 45 = 265). Consequently, criteria (power consumption under 265W) are met.

The validation of the second implementation reports a power consumption of 290W
(35*7 + 45). Indeed, each fpa device and its associated runtime consume 35W while the
mass memory consumes 45W. So, the validation theorem reports that mission criteria
(power consumption under 350W) are met and does not report any error.

4.1.2 Mass budget

When evaluating the mass budget, validation of the first architecture fails. Indeed,
the system is composed of 7 FPA devices (without runtimes) with a mass of 2Kg, two on-
board computers with a mass of 9Kg and one mass memory unit with a mass of 15Kg. In
other word, the total mass of the system has a mass of 47 Kg, which is too important
regarding mission requirements (maximum mass of 40 Kg). In that case, our analysis tool
(REAL) reports an error, indicating that mission requirement are not met.

The validation of the second implementation is successful: indeed, this deployment
does not use on-board computer and use only 7 fpa devices, each one processes their data
(3Kg for each) and send them to the mass memory subsystem (15Kg). Consequently, the
mass of the system is 36Kg (7 * 3 + 15), which is less than mission requirements.

4.2 Documentation & qualification/certification materials
generation

The document that describes the GAIA mission (reference 4) explains how to
produce materials for certification/qualification purposes. Due to a lack of tools,
production of such documents is still done manually by engineers. This section shows the
accuracy of AADL to automate qualification and/or certification materials production. We
illustrate that by demonstrating that documents produced in the initial report can be
automatically generated from AADL models, ensuring specifications compliance.

4.2.1 Connectivity matrix generation

First of all, we introduce a connectivity matrix generator. It consists in the
generation of tables that shows the connection between each subsystem. By inspecting such
documents, designers and developers can evaluate, assess and optimize their architecture.

The document that describes the GAIA mission (reference 4) proposes a
connectivity matrix for the second implementation of the system. On our side, we create a
matrix generator that creates this matrix from AADL models (see Figure 8 for the matrix of
the first implementation and Figure 9 for the matrix of the second implementation).

From these generated matrixes we can see that the second architecture would be
more accurate than the second: it would require less bandwidth and use less connections
from one component to another.

Figure 8 - Connectivity Matrix generated from AADL models for the first implementation

Figure 9 - Connectivity matrix generated from AADL models for the second implementation

4.2.2 Function implementation coverage

To provide the ability to trace the implementation components with the functional
view, we introduce a traceability matrix between the implementation models and the
functional models. This matrix establishes a link between components of the
implementation and components from the functional view. By doing so, it provides a
convenient view of the system and gives the ability to detect unimplemented function or
components from the implementation that corresponds to nothing.

However, at this time, this traceability matrix is not fully complete. In particular, the
specification of the binding between the implementation and the functional view is not
clear. And so, the generation rules of this traceability matrix remain unclear. In particular,
when a component implements a particular function, how should be considered its parent
component? Shall the matrix generator consider that the parent component implicitly
implements the function or is this function explicitly specified in the parent component by
the system designer? Such generation or modelling rules would have an impact on the
modelling approach and its associated tools.

Figure 10 - Functions implementation traceability for the first implementation

5 FURTHER WORK AND PERSPECTIVES

This section summarizes the modelling approach we propose in our approach and
provides some perspectives and next steps to improve this development approach.

5.1 Documentation & qualification/certification materials
generation

First of all, system validation (theorems to be checked by tools) as well as
qualification/certification materials generation can be improved. In particular, other
requirements can be checked from AADL models. This would be addressed through the
definition of more theorems that can be processed by REAL.

Certification/qualification materials could also be improved and more documents
would be produced from AADL models. This would help system designers and engineers by
automating the production of such documents and ensuring their consistency with
specifications.

5.2 Interface with domain-specific tools

Another concern is the validation of the system for some specific requirements. In
some case, validation approach such as REAL is not sufficient and it is necessary to
interface the AADL models with domain-specific tools to analyze the system and check its
requirements.

For example, in the case of bus load analysis and bandwidth analysis, a precise
validation of these aspects would require interfacing the specifications with dedicated
analysis tools. Indeed, such validation requires to precisely knowing the behaviour of the
bus (priority, bus sharing policy, etc) and cannot be done using a theorem-based approach.

However, interfacing AADL models with domain-specific tools would be easily feasible
since all required information are available in the specifications (models) and would only
need to be exported to an appropriate representation format to be processed by specific
tools.

6 CONCLUSION

This white paper is a follow-up of our previous study for the specification of avionics
architecture (reference 3). The overall approach is then quite stable: designers first specify
mission requirements and criteria. Then, they define system functions and their
interaction. Finally, this function view of the system is refined into an implementation
using specialized components that precisely describe system requirements (required
bandwidth, computation capacity to be consumed, etc.). Finally, these models are
processed by tools to (1) validate several requirements and (2) automatically create
documents for qualification/certification.

Using our methodology to design a real case-study (the GAIA mission, see reference 4)
leads us to design tools that demonstrate the relevancy of AADL models for avionics system
modelling and the potential automation of documents generation for
qualification/certification. It also shows that requirements can be validated from AADL
models. However, other system properties are very specific and would require to be
processed by dedicated tools. In that case, it would be possible to export AADL
specifications to an appropriate abstraction level to be analyzed and processed by these
domain-specific tools.

7 REFERENCES

1. “A Practice Framework for Model-Based Analysis Using the Architecture Analysis
& Design Language (AADL)” – NASA – 13/02/2009

2. “AADL Practice Framework: Preliminary Version” – Embry-Riddle – Technical
Report – 09/2006

3. “Modelling Hardware Avionics Architecture with AADL”. Julien Delange. White
paper for the AADL committee, January 2011.

4. “Guidelines for the selection of architectures”. Jean-François Soucaille & Luc
Planche. Technical report, ASTRIUM, 12/2010.

5. “System Architecture Virtual Integration: A Case Study”. P. Feiler, L. Wrage and J.
Hansson. In ERTSS2010.

8 TEXTUAL VERSION OF AADL MODELS

8.1 Mission requirements and criteria

system Gaia
properties
 Mission_Properties::Bandwidth_To_Earth => 10 Mbytesps;
 Physical_Properties::Total_Power => 350 W;
 Physical_Properties::Max_Mass => 40 Kg;
end Gaia;

8.2 Functions specification

package GAIA::Functions
public

 with ARAM_Properties;
 with Physical_Properties;
 with Processor_Properties;
 with Bus_Properties;

 with GAIA;
 with Data_Types;

 -- Mission functions --

 -- These abstract component types define functional blocks. These
 -- use the AADLv2 abstract component type, as these are to be later
 -- refined as either software or hardware blocks. This is to be
 -- decided at implementation time.

 abstract fpa_data_get
 features
 dataout : out data port Data_Types::fpa_data;
 ctrlout : out data port Data_Types::fpa_ctrl;
 end fpa_data_get;

 abstract fpa_control
 features
 ctrlin : in data port Data_Types::fpa_ctrl;
 ctrlout : out data port Data_Types::fpa_ctrl;
 end fpa_control;

 abstract process_data
 features
 fpadata1 : in data port Data_Types::fpa_data;
 fpadata2 : in data port Data_Types::fpa_data;
 fpadata3 : in data port Data_Types::fpa_data;
 fpadata4 : in data port Data_Types::fpa_data;
 fpadata5 : in data port Data_Types::fpa_data;
 fpadata6 : in data port Data_Types::fpa_data;
 fpadata7 : in data port Data_Types::fpa_data;
 output : out data port Data_Types::processed_data;
 end process_data;

 abstract compress_data
 features
 input : in data port Data_Types::processed_data;
 output : out data port Data_Types::compressed_data;
 end compress_data;

 abstract store_data
 features
 input : in data port Data_Types::compressed_data;
 output : out data port Data_Types::compressed_data;
 properties
 ARAM_Properties::Required_Memory => 800 GByte;
 end store_data;

 abstract manage_memory
 features
 input : in data port Data_Types::compressed_data;
 properties
 Processor_Properties::MIPS => 1;
 end manage_memory;
 -- Gaia functional design
 --
 -- In this model, we propose a model that supports the function view
 -- of the Gaia mission.
 --
 -- The Gaia system component type extends Mission_Criteria::Gaia,
 -- and thus inherits its requirements, and also the validation rules
 -- to be performed.
 --
 -- The Gaia.Functionnal component implementation details how
 -- functional blocks are to be used in this variant of the model.

 system Gaia extends GAIA::Gaia
 end Gaia;

 system implementation Gaia.Functional
 subcomponents
 get1 : abstract fpa_data_get;
 get2 : abstract fpa_data_get;
 get3 : abstract fpa_data_get;
 get4 : abstract fpa_data_get;
 get5 : abstract fpa_data_get;
 get6 : abstract fpa_data_get;
 get7 : abstract fpa_data_get;

 ctrl1 : abstract fpa_control;
 ctrl2 : abstract fpa_control;
 ctrl3 : abstract fpa_control;
 ctrl4 : abstract fpa_control;
 ctrl5 : abstract fpa_control;
 ctrl6 : abstract fpa_control;
 ctrl7 : abstract fpa_control;

 prs_data : abstract process_data;
 compress : abstract compress_data;
 store : abstract store_data;

 mem : abstract manage_memory;

 connections
 port get1.ctrlout -> ctrl1.ctrlin
 {Bus_Properties::Required_Bandwidth => 20_000_000 bitsps;};
 port get2.ctrlout -> ctrl2.ctrlin
 {Bus_Properties::Required_Bandwidth => 20_000_000 bitsps;};
 port get3.ctrlout -> ctrl3.ctrlin
 {Bus_Properties::Required_Bandwidth => 20_000_000 bitsps;};
 port get4.ctrlout -> ctrl4.ctrlin
 {Bus_Properties::Required_Bandwidth => 20_000_000 bitsps;};
 port get5.ctrlout -> ctrl5.ctrlin
 {Bus_Properties::Required_Bandwidth => 20_000_000 bitsps;};
 port get6.ctrlout -> ctrl6.ctrlin
 {Bus_Properties::Required_Bandwidth => 20_000_000 bitsps;};
 port get7.ctrlout -> ctrl7.ctrlin
 {Bus_Properties::Required_Bandwidth => 20_000_000 bitsps;};

 port get1.dataout -> prs_data.fpadata1
 {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;};
 port get2.dataout -> prs_data.fpadata2
 {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;};
 port get3.dataout -> prs_data.fpadata3
 {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;};
 port get4.dataout -> prs_data.fpadata4
 {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;};
 port get5.dataout -> prs_data.fpadata5
 {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;};
 port get6.dataout -> prs_data.fpadata6
 {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;};
 port get7.dataout -> prs_data.fpadata7
 {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;};

 port prs_data.output -> compress.input
 {Bus_Properties::Required_Bandwidth => 140_000_000 bitsps;};

 port compress.output -> store.input
 {Bus_Properties::Required_Bandwidth => 70_000_000 bitsps;};

 port store.output -> mem.input;
 properties
 Period => 1 ms;
 -- XXX What is the meaning of this period?

 Physical_Properties::Mass => 40 Kg;
 end Gaia.Functional;

end GAIA::Functions;

8.3 Generic components

-- This package models a set of generic reusable elements, outside of
-- the space domain.

-- XXX to be extended/corrected so that these elements match actual
-- hardware/software elements.

package Library
public
 with Bus_Properties;

 -- Buses --

 bus generic
 end generic;

 bus genericbus extends generic
 end genericbus;

 -- SpaceWire bus

 bus spacewire extends genericbus
 end spacewire;

 bus implementation spacewire.i
 properties
 Bus_Properties::Bus_Type => ptp;
 Bus_Properties::Bandwidth => 100_000_000 bitsps;
 Bus_Properties::Max_Latency => 100 ms;
 end spacewire.i;

 -- MIL-STD 1553 bus

 bus mil1553 extends genericbus
 properties
 Bus_Properties::Bus_Type => mtp;
 Bus_Properties::Bandwidth => 1_000_000 bitsps;
 Bus_Properties::Max_Latency => 100 ms;
 end mil1553;

 bus implementation mil1553.i
 end mil1553.i;

 -- CAN Bus

 bus can extends genericbus
 properties
 Bus_Properties::Bus_Type => mtp;
 Bus_Properties::Bandwidth => 600_000 bitsps;
 Bus_Properties::Max_Latency => 100 ms;
 end can;

 bus implementation can.i
 end can.i;

 -- Ethernet

 bus ethernet extends genericbus
 end ethernet;

 bus implementation ethernet.highspeed
 properties
 Bus_Properties::Bus_Type => mtp;
 Bus_Properties::Bandwidth => 100_000_000 bitsps;
 Bus_Properties::Max_Latency => 100 ms;
 end ethernet.highspeed;

 bus implementation ethernet.lowspeed
 properties
 Bus_Properties::Bus_Type => mtp;
 Bus_Properties::Bandwidth => 10_000_000 bitsps;
 Bus_Properties::Max_Latency => 100 ms;
 end ethernet.lowspeed;

end Library;

-- This package models reusable functional blocks for space missions.

package Blocks
public

 with ARAM_Properties;
 with Physical_Properties;
 with Bus_Properties;

 with Library;
 with GAIA::Functions;
 with Data_Types;

 -- FPA --

 device FPA
 -- The FPA (Focal Plane Arrays) camera device corresponds to a
 -- device that acquires/captures images of stars.

 features
 dataout : out data port Data_Types::FPA_data;
 ctrlout : out data port Data_Types::FPA_ctrl;
 properties
 ARAM_Properties::Realizes => (classifier
(GAIA::Functions::FPA_data_get));
 end FPA;

 device implementation FPA.i
 end FPA.i;

 -- FPA_Control --

 device FPA_control
 -- The FPA_control device corresponds to the device that controls
 -- the camera itself (take picture, etc..)

 features
 ctrlin : in data port Data_Types::FPA_ctrl;
 ctrlout : out data port Data_Types::FPA_ctrl;
 properties
 ARAM_Properties::Realizes => (classifier
(GAIA::Functions::FPA_control));
 end FPA_control;

 device implementation FPA_control.i
 end FPA_control.i;

 -- FPA_block --

 system FPA_block
 -- The FPA_block component assembles both main FPA
 -- functions: image acquisition and FPA device control.
 features
 bus_access : requires bus access Library::genericbus;
 end FPA_block;

 -- FPA_block_without_runtime --

 system FPA_block_without_runtime extends FPA_block
 -- FPA_block_without_runtime contains the FPA device for image
 -- acquisition. It sends RAW (uncompressed) data to the obc that
 -- compresses the pictures. This component is used for deployment 1.
 features
 dataout : out data port Data_Types::FPA_data;
 end FPA_block_without_runtime;

 system implementation FPA_block_without_runtime.i
 subcomponents
 datapart : device FPA.i;

 ctrlpart : device FPA_control.i;

 connections
 port datapart.dataout -> dataout;
 port datapart.ctrlout -> ctrlpart.ctrlin
 {Bus_Properties::Required_Bandwidth => 20_000_000 bitsps;};

 properties
 Physical_Properties::Mass => 2 Kg;
 Physical_Properties::Power_Consume => 20 W;
 end FPA_block_without_runtime.i;

 -- FPA_block_with_runtime --

 system FPA_block_with_runtime extends FPA_block
 -- FPA_block_with_runtime contains the FPA device for image
 -- acquisition, the FPA_control to control the FPA device as well as
 -- a runtime that compress the raw data from the FPA device. Then,
 -- the runtime sends directly the compressed data to the mass memory
 -- subsystem. This component is used for deployment 2.

 features
 output : out data port Data_Types::compressed_data;
 end FPA_block_with_runtime;

 system implementation FPA_block_with_runtime.i
 subcomponents
 datapart : device FPA.i;
 ctrlpart : device FPA_control.i;
 processing : processor compress_runtime_lc.i;

 connections
 port datapart.dataout -> processing.raw;
 port datapart.ctrlout -> ctrlpart.ctrlin
 {Bus_Properties::Required_Bandwidth => 20_000_000 bitsps;};

 bus access bus_access -> processing.bus_access;

 properties
 Physical_Properties::Mass => 3 Kg;
 Physical_Properties::Power_Consume => 35 W;
 end FPA_block_with_runtime.i;

 -- Compress_Runtime --

 processor compress_runtime
 -- The compress_runtime component is the processor used to
 -- compress the incoming raw data from the FPA device.

 features
 bus_access : requires bus access Library::genericbus;

 properties
 ARAM_Properties::Realizes =>
 (classifier (GAIA::Functions::compress_data),
 classifier (GAIA::Functions::process_data));
 end compress_runtime;

 processor compress_runtime_hc extends compress_runtime
 -- compress_runtime_hc means "High Capacity": it has a high
 -- computation capacity to compress incoming raw data from all FPA
 -- devices. It is used in deployment 1 as a processor in the obc
 -- subsystem.
 features
 FPAdata1 : in data port Data_Types::FPA_data;
 FPAdata2 : in data port Data_Types::FPA_data;
 FPAdata3 : in data port Data_Types::FPA_data;
 FPAdata4 : in data port Data_Types::FPA_data;
 FPAdata5 : in data port Data_Types::FPA_data;
 FPAdata6 : in data port Data_Types::FPA_data;
 FPAdata7 : in data port Data_Types::FPA_data;
 compressed : out data port Data_Types::compressed_data;
 end compress_runtime_hc;

 processor implementation compress_runtime_hc.i
 end compress_runtime_hc.i;

 processor compress_runtime_lc extends compress_runtime
 -- compress_runtime_lc means "Low Capacity": it has a low
 -- computation capacity and is embedded in the
 -- FPA_block_with_runtime subsystem. It has a lower computation
 -- capacity because it compresses only one picture at the same
 -- time whereas the High Capacity version must compress 8 pictures
 -- with the same deadline. This version is used in deployment 2.

 features
 raw : in data port Data_Types::FPA_data;
 compressed : out data port Data_Types::compressed_data;
 end compress_runtime_lc;

 processor implementation compress_runtime_lc.i
 end compress_runtime_lc.i;

 -- OBC --

 system obc
 -- The obc subsystem corresponds to the computer that compresses
 -- the incoming raw data from the 8 FPA devices. Its implementation
 -- contains a high capacity processing resources, able to compress
 -- all pictures with a tight timing constraint (1ms). Two
 -- processor are used to introduce redundancy.
 --
 -- This subsystem is used in deployment 1.
 features
 bus_access : requires bus access Library::genericbus;
 rawdata1 : in data port Data_Types::FPA_data;

 rawdata2 : in data port Data_Types::FPA_data;
 rawdata3 : in data port Data_Types::FPA_data;
 rawdata4 : in data port Data_Types::FPA_data;
 rawdata5 : in data port Data_Types::FPA_data;
 rawdata6 : in data port Data_Types::FPA_data;
 rawdata7 : in data port Data_Types::FPA_data;
 rawdata8 : in data port Data_Types::FPA_data;
 compressed : out data port Data_Types::compressed_data ;
 end obc;

 system implementation obc.i
 subcomponents
 computer1 : processor compress_runtime_hc.i;
 computer2 : processor compress_runtime_hc.i;

 connections
 bus access bus_access -> computer1.bus_access;
 bus access bus_access -> computer2.bus_access;

 properties
 Physical_Properties::Mass => 9 Kg;
 Physical_Properties::Power_Consume => 40 W;
 end obc.i;

 -- Mass_Memory --

 memory mass_memory
 -- The mass_memory component corresponds to the memory device used
 -- to store and retrieve pictures. It is the memory device that
 -- contains all the compressed data produced by either the on board
 -- computer or the FPA subsystem block.

 features
 bus_access : requires bus access Library::genericbus;
 end mass_memory;

 memory implementation mass_memory.i
 properties
 ARAM_Properties::Realizes => (classifier
(GAIA::Functions::manage_memory));
 end mass_memory.i;

 -- Memory_Runtime --

 processor memory_runtime
 -- The memory_runtime processor is used on the memory subsystem to
 -- allocate memory and organize the memory organization of the
 -- hardware part of the memory.

 features
 bus_access : requires bus access Library::genericbus;
 input : in data port Data_Types::compressed_data;

 properties
 ARAM_Properties::Realizes => (classifier
(GAIA::Functions::store_data));
 end memory_runtime;

 processor implementation memory_runtime.i
 end memory_runtime.i;

 -- Memory_Management --

 system memory_management
 -- The memory_management component gathers all components required
 -- for the implementation of the memory subsystem. It contains the
 -- hardware part of the memory itself the mass_memory memory
 -- component as well as the runtime that controls it - the
 -- memory_runtime component).
 --
 -- In deployment 1, it is connected to the obc that sends processed
 -- and compressed data.
 --
 -- In deployment 2, it is connected to FPA subsystems that sends
 -- directly compressed data. For communication purposes, this
 -- subsystem requires a connection to a bus.

 features
 bus_access : requires bus access Library::genericbus;
 to_cdmu : out data port Data_Types::compressed_data;

 properties
 ARAM_Properties::Required_Memory => 800 GByte;
 end memory_management;

 system memory_management_two_links extends memory_management
 features
 link1 : in data port Data_Types::compressed_data;
 link2 : in data port Data_Types::compressed_data;
 end memory_management_two_links;

 system memory_management_eight_links extends memory_management
 features
 link1 : in data port Data_Types::compressed_data;
 link2 : in data port Data_Types::compressed_data;
 link3 : in data port Data_Types::compressed_data;
 link4 : in data port Data_Types::compressed_data;
 link5 : in data port Data_Types::compressed_data;
 link6 : in data port Data_Types::compressed_data;
 link7 : in data port Data_Types::compressed_data;
 link8 : in data port Data_Types::compressed_data;
 end memory_management_eight_links;

 system implementation memory_management_two_links.i
 subcomponents
 mm : memory mass_memory.i;
 runtime : processor memory_runtime.i;

 connections
 bus access bus_access -> runtime.bus_access;

 properties
 Physical_Properties::Mass => 15 Kg;
 Physical_Properties::Power_Consume => 45 W;
 end memory_management_two_links.i;

 system implementation memory_management_eight_links.i
 subcomponents
 mm : memory mass_memory.i;
 runtime : processor memory_runtime.i;

 connections
 bus access bus_access -> runtime.bus_access;
 properties
 Physical_Properties::Mass => 15 Kg;
 Physical_Properties::Power_Consume => 45 W;
 end memory_management_eight_links.i;

end Blocks;

8.4 System implementations

-- This package models alternatives for the Gaia implementation
-- design.

package GAIA::Implementations
public

 with ARAM_Properties;
 with Bus_Properties;

 with Blocks;
 with Library;
 with GAIA;
 with GAIA::Functions;

 -- Gaia implementation design
 --
 -- In this model, we propose a model that supports the
 -- implementation view of the Gaia mission.
 --
 -- The Gaia system component type extends Gaia::Gaia, and thus
 -- inherits its requirements, and also the validation rules to be
 -- checked.

 system Gaia extends GAIA::Gaia
 end Gaia;

 --

 -- Gaia candidate design #1
 -- This design corresponds to the first iteration, with the
 -- following functions:
 -- * 7 couples of (Get_Data + Ctrl FPA) units, made redundant using
 -- a N + 1/N scheme
 -- => hence 8 functions, named U1_1 to U1_8
 -- * 1 couple of (Process Data + Compress Data), duplicated
 -- => hence 2 functions, named U2_1 and U2_2
 -- * 1 mass memory unit, named U3_1

 system implementation gaia.first_architecture
 subcomponents

 -- From the design document, one can infere that

 -- * U1 units are pure hardware, using one board,
 -- consumes 20W, requires 600MIPs, weight 2Kg

 U1_1 : system blocks::fpa_block_without_runtime.i;
 U1_2 : system blocks::fpa_block_without_runtime.i;
 U1_3 : system blocks::fpa_block_without_runtime.i;
 U1_4 : system blocks::fpa_block_without_runtime.i;
 U1_5 : system blocks::fpa_block_without_runtime.i;
 U1_6 : system blocks::fpa_block_without_runtime.i;
 U1_7 : system blocks::fpa_block_without_runtime.i;

 -- U1_8 : system blocks::fpa_block_without_runtime.i;
 -- Note: this component is added to follow the N + 1/N redundancy
 -- pattern. It is disabled for now.

 -- * U2 units are OBCs, 4200 MIPs, cycle time range of 1ms,
 -- consumes 40W, weights 9Kg.

 U2_1 : system blocks::obc.i;
 U2_2 : system blocks::obc.i;

 -- * U3 unit is a mass memory. We select the two links variant, as
 -- this memory is to be connected to U2 units. It requires
 -- 1MIPS, consumes 45W, weights 15kg.

 U3_1 : system blocks::memory_management_two_links.i;

 transportlayer : bus Library::genericbus;

 -- Evaluation results:
 -- total weight: 7 * 2 + 2 * 9 + 15 = 47 kg
 -- total power: 7 * 20 + 2 * 40 + 45 = 265 W

 connections
 -- Each U1 unit is connected to the two U2 units

 port U1_1.dataout -> U2_1.rawdata1
 {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;

 Actual_Connection_Binding => (reference (transportlayer));};
 port U1_2.dataout -> U2_1.rawdata2
 {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;
 Actual_Connection_Binding => (reference (transportlayer));};
 port U1_3.dataout -> U2_1.rawdata3
 {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;
 Actual_Connection_Binding => (reference (transportlayer));};
 port U1_4.dataout -> U2_1.rawdata4
 {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;
 Actual_Connection_Binding => (reference (transportlayer));};
 port U1_5.dataout -> U2_1.rawdata5
 {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;
 Actual_Connection_Binding => (reference (transportlayer));};
 port U1_6.dataout -> U2_1.rawdata6
 {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;
 Actual_Connection_Binding => (reference (transportlayer));};
 port U1_7.dataout -> U2_1.rawdata7
 {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;
 Actual_Connection_Binding => (reference (transportlayer));};
 -- port U1_8.dataout -> U2_1.rawdata8
 -- {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;
 -- Actual_Connection_Binding => (reference (transportlayer));};

 port U1_1.dataout -> U2_2.rawdata1
 {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;
 Actual_Connection_Binding => (reference (transportlayer));};
 port U1_2.dataout -> U2_2.rawdata2
 {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;
 Actual_Connection_Binding => (reference (transportlayer));};
 port U1_3.dataout -> U2_2.rawdata3
 {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;
 Actual_Connection_Binding => (reference (transportlayer));};
 port U1_4.dataout -> U2_2.rawdata4
 {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;
 Actual_Connection_Binding => (reference (transportlayer));};
 port U1_5.dataout -> U2_2.rawdata5
 {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;
 Actual_Connection_Binding => (reference (transportlayer));};
 port U1_6.dataout -> U2_2.rawdata6
 {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;
 Actual_Connection_Binding => (reference (transportlayer));};
 port U1_7.dataout -> U2_2.rawdata7
 {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;
 Actual_Connection_Binding => (reference (transportlayer));};
 -- port U1_8.dataout -> U2_2.rawdata8
 -- {Bus_Properties::Required_Bandwidth => 50_000_000 bitsps;
 -- Actual_Connection_Binding => (reference (transportlayer));};

 port U2_1.compressed -> U3_1.link1
 {Bus_Properties::Required_Bandwidth => 70_000_000 bitsps;
 Actual_Connection_Binding => (reference (transportlayer));};
 port U2_2.compressed -> U3_1.link2
 {Bus_Properties::Required_Bandwidth => 70_000_000 bitsps;
 Actual_Connection_Binding => (reference (transportlayer));};

 bus access transportlayer -> U3_1.bus_access;

 bus access transportlayer -> U2_1.bus_access;
 bus access transportlayer -> U2_2.bus_access;

 bus access transportlayer -> U1_1.bus_access;
 bus access transportlayer -> U1_2.bus_access;
 bus access transportlayer -> U1_3.bus_access;
 bus access transportlayer -> U1_4.bus_access;
 bus access transportlayer -> U1_5.bus_access;
 bus access transportlayer -> U1_6.bus_access;
 bus access transportlayer -> U1_7.bus_access;
 -- bus access transportlayer -> U1_8.bus_access;
 end gaia.first_architecture;

 --

 -- Gaia candidate design #2
 -- This design corresponds to the second iteration, with the
 -- following functions:
 -- * 7 couples of (Get_Data + Ctrl FPA + compress + process) units,
 -- made redundant using a N + 1/N scheme
 -- * 1 mass memory unit, named U3_1

 system implementation gaia.second_architecture
 subcomponents

 -- From the design document, one can infere that

 -- * U1 units are pure hardware, using one board,
 -- consumes 35W, requires 600MIPs, weight 3Kg

 U1_1 : system blocks::fpa_block_with_runtime.i;
 U1_2 : system blocks::fpa_block_with_runtime.i;
 U1_3 : system blocks::fpa_block_with_runtime.i;
 U1_4 : system blocks::fpa_block_with_runtime.i;
 U1_5 : system blocks::fpa_block_with_runtime.i;
 U1_6 : system blocks::fpa_block_with_runtime.i;
 U1_7 : system blocks::fpa_block_with_runtime.i;
 -- U1_8 : system blocks::fpa_block_with_runtime.i;

 -- * U2 units requires 1 MIPs consumes 45W, weights 15Kg.

 U2_1 : system blocks::memory_management_eight_links.i;

 transportlayer : bus Library::genericbus;

 -- Evaluation results:
 -- total weight: 7 * 3 + 1 * 15 = 36 kg
 -- total power: 7 * 35 + 45 = 290 W

 connections
 port U1_1.output -> U2_1.link1
 {Bus_Properties::Required_Bandwidth => 10_000_000 bitsps;
 Actual_Connection_Binding => (reference (transportlayer));};
 port U1_2.output -> U2_1.link2
 {Bus_Properties::Required_Bandwidth => 10_000_000 bitsps;

 Actual_Connection_Binding => (reference (transportlayer));};
 port U1_3.output -> U2_1.link3
 {Bus_Properties::Required_Bandwidth => 10_000_000 bitsps;
 Actual_Connection_Binding => (reference (transportlayer));};
 port U1_4.output -> U2_1.link4
 {Bus_Properties::Required_Bandwidth => 10_000_000 bitsps;
 Actual_Connection_Binding => (reference (transportlayer));};
 port U1_5.output -> U2_1.link5
 {Bus_Properties::Required_Bandwidth => 10_000_000 bitsps;
 Actual_Connection_Binding => (reference (transportlayer));};
 port U1_6.output -> U2_1.link6
 {Bus_Properties::Required_Bandwidth => 10_000_000 bitsps;
 Actual_Connection_Binding => (reference (transportlayer));};
 port U1_7.output -> U2_1.link7
 {Bus_Properties::Required_Bandwidth => 10_000_000 bitsps;
 Actual_Connection_Binding => (reference (transportlayer));};
 -- port U1_8.output -> U2_1.link8
 -- {Bus_Properties::Required_Bandwidth => 10_000_000 bitsps;
 -- Actual_Connection_Binding => (reference (transportlayer));};

 bus access transportlayer -> U2_1.bus_access;

 bus access transportlayer -> U1_1.bus_access;
 bus access transportlayer -> U1_2.bus_access;
 bus access transportlayer -> U1_3.bus_access;
 bus access transportlayer -> U1_4.bus_access;
 bus access transportlayer -> U1_5.bus_access;
 bus access transportlayer -> U1_6.bus_access;
 bus access transportlayer -> U1_7.bus_access;
 -- bus access transportlayer -> U1_8.bus_access;
 end gaia.second_architecture;

end GAIA::Implementations;

9 DEFINITION OF NEW AADL PROPERTIES

9.1 Mission Properties
-- This package defines properties for defining space mission
-- objectives and requirements.

property set Mission_Properties is

 -- Mission Timing --

 Mission_Time_Units: type units
 (ps,
 ns => ps * 1000,
 us => ns * 1000,
 ms => us * 1000,

 sec => ms * 1000,
 min => sec * 60,
 hr => min * 60,
 day => hr * 24,
 week => day * 7);

 Mission_Max_Time: constant Mission_Duration_Type => 1000 week;

 Mission_Duration_Type: type aadlinteger 0 ps .. Mission_Max_Time
 units Mission_Time_Units;

 Mission_Duration : inherit Mission_Duration_Type applies to (system);

 -- Communication requirements --

 Bandwidth_To_Earth : Data_Volume applies to (abstract, system, device,
bus);

end Mission_Properties;

9.2 Physical Properties
-- This package defines some units related to physics of systems.

property set Physical_Properties is

 -- Power units --

 Power_Units: type units
 (W,
 KW => W * 1000,
 MW => KW * 1000,
 GW => MW * 1000,
 TW => GW * 1000);

 Max_Power: constant Power_Units => 2#1#e32 W;
 Power : type aadlreal 0 W .. Max_Power units Power_Units;
 Power_Consume : Power applies to (processor, device, memory, system);
 Power_Provide : Power applies to (device);
 Total_Power : Power applies to (system);

 -- EMC --

 Ionizing_Dose_Units : type units (
 rad,
 Krad => rad * 1000,
 Mrad => Krad * 1000,
 Grad => Mrad * 1000,

 Trad => Grad * 1000);

 Max_Ionizing_Dose: constant Ionizing_Dose_Units => 2#1#e32 rad;

 Ionizing_Type : type aadlinteger
 0 rad .. Max_Ionizing_Dose units Ionizing_Dose_Units;

 TID : Ionizing_Type applies to (processor, device, memory);

 -- Mass units --

 Mass_Units: type units (
 g,
 Kg => g * 1000,
 T => Kg * 1000);

 Maximum_Mass: constant Mass_Units => 2#1#e32 g;

 Mass_Type : type aadlreal 0 g .. Maximum_Mass units Mass_Units;

 Mass : Mass_Type applies to (processor, device, memory, system);
 -- Define the mass of an element. Note: if both a system and its
 -- subcomponents define a mass, then it is assumed that the mass of
 -- the system should be more or equal to the sum of the mass of its
 -- subcomponents.

 Max_Mass : Mass_Type applies to (processor, device, memory, system);

end Physical_Properties;

9.3 Processor Properties
property set Processor_Properties is

 Frequency : type aadlinteger 0 Hz .. Max_Aadlinteger units
 (Hz,
 KHz => Hz * 1000,
 MHz => KHz * 1000,
 GHz => MHz * 1000);

 CPU_Speed : Frequency applies to (processor);
 MIPS : aadlinteger 0 .. Max_Aadlinteger applies to (processor,
abstract);
end Processor_Properties;

9.4 Bus Properties
property set Bus_Properties is

 Required_Bandwidth : Data_Volume applies to

 (abstract, system, device, bus access, connection);

 Bandwidth : Data_Volume applies to (abstract, system, device, bus);

 Bus_Type : enumeration (mtp, ptp) applies to (bus, system, abstract);
 -- mtp: multi-point bus
 -- ptp: point-to-point bus

 Expected_Latency : Time_Range applies to (bus, bus access, abstract);

 Max_Latency : Time applies to (bus, bus access, abstract);

end Bus_Properties;

9.5 Dedicated ARAM Properties

property set ARAM_Properties is

 Required_Memory : inherit Size applies to
 (system, abstract, device, processor);

 Minimum_Size : inherit Size applies to (memory, abstract);

 Realizes : inherit list of classifier (abstract, system) applies to
 (processor, bus, device, abstract, memory, process);
 -- In our modeling patterns, we use AADLv2 abstract components to
 -- model Java-like interfaces, i.e. a set of services to be
 -- implemented. The Realizes functions indicates which interface is
 -- implemented by a concrete component type

 Actual_Function_Binding : inherit list of reference (abstract, system)
 applies to (processor, bus, device, abstract, memory, process);
 -- Define the binding of abstract function to actual implementations.

end ARAM_Properties;

	1 RATIONALE
	2 DESIGN APPROACH & APPROACH - REMINDER
	2.1 Overall presentation
	2.2 Benefits of this approach

	3 APPLY DESIGN APPROACH TO THE GAIA MISSION
	3.1 GAIA Mission Overview and mission criteria
	3.1.1 Functional decomposition
	3.1.2 First implementation: data-centralized on an OBC platform
	3.1.3 Second implementation: processing separation on FPA devices

	3.2 Introduction/reminder to AADL modelling patterns
	3.2.1 Mission criteria with AADL system and properties
	3.2.2 Functional blocks modelling with abstract and properties
	3.2.3 Refinement into implementation with specialized AADL components

	3.3 Mapping mission criteria into AADL models
	3.4 Functional design with AADL
	3.5 Implementations: assembling generic blocks
	3.5.1 Generic blocks definition
	3.5.2 First implementation
	3.5.3 Second implementation

	4 MODEL VALIDATION & DOCUMENT GENERATION
	4.1 Validation
	4.1.1 Electric consumption
	4.1.2 Mass budget

	4.2 Documentation & qualification/certification materials generation
	4.2.1 Connectivity matrix generation
	4.2.2 Function implementation coverage

	5 FURTHER WORK AND PERSPECTIVES
	5.1 Documentation & qualification/certification materials generation
	5.2 Interface with domain-specific tools

	6 CONCLUSION
	7 REFERENCES
	8 TEXTUAL VERSION OF AADL MODELS
	8.1 Mission requirements and criteria
	8.2 Functions specification
	8.3 Generic components
	8.4 System implementations

	9 DEFINITION OF NEW AADL PROPERTIES
	9.1 Mission Properties
	9.2 Physical Properties
	9.3 Processor Properties
	9.4 Bus Properties
	9.5 Dedicated ARAM Properties

