SAE
AS5506/TBD
- 31 -

	[image: image1.png]Sk A\Crospace

An SAE International Group

AEROSPACE
	AEROSPACE

STANDARD

	[image: image2.emf] AS5506/TBD

	
	
	Issued
2013-2 Draft

	SAE Architecture Analysis and Design Language (AADL) Annex Volume TBD:

Annex TBD: Model Constraints Sublanguage Annex

RATIONALE

The purpose of this annex is to provide a sublanguage for the specification of assertions on the structure, properties and behavior of classifiers in AADL models.
This Architecture Analysis & Design Language (AADL) standard document was prepared by the SAE AS-2C Architecture Description Language Subcommittee, Embedded Computing Systems Committee, Aerospace Avionics Systems Division.
Table of Contents

71
References

71.1
Normative References

71.2
Informative References

92
Model Constraints Sublanguage

92.1
Scope

102.2
Overview of the Model Constraints Sublanguage Concepts

112.2.1
Constraint Annex Library Grammar

122.2.2
Constraint Annex Subclause Grammar

142.2.3
Types, Constants, Functions and Expressions

282.2.4
Pre-defined sets and model relationship functions

302.2.5
Pre-defined sets for the AADL subcomponent containment relationship

332.2.6
Pre-defined functions for inter-classifier relationships

342.2.7
Accessing properties of model elements

352.2.8
Pre-defined type conversions

362.2.9
Pre-defined utility functions for element types - TBD

372.2.10
Other pre-defined utility functions - TBD

372.3
Structural Assertions Sublanguage

422.4
Behavior Assertions Sublanguage

Table of Figures

Error! Bookmark not defined.Figure 1:

Foreword

(1) The AADL standard was prepared by the SAE Avionics Systems Division (ASD) Embedded Computing Systems Committee (AS-2) Architecture Description Language (AS-2C) subcommittee.
(2) This AADL standard defines one annex to the SAE AADL standard AS5506A.

(3) This AADL standard includes an Annex that defines the grammar for a structural model assertions sublanguage and the grammar for a behavior assertions sublanguage. Structural and behavior assertions are grouped into named categories, called Viewpoints. The assertions grouped in the same viewpoint are a formal specification of a category of requirements.
(4) Three types of Viewpoints are defined, in order to cover three major use cases for specifying and enforcing model constraints:
· in order to define AADL language subsets and enforce their consistent use in projects, structural assertions can be specified in the context of Subset Contract Viewpoints. In this case, they apply to all classifiers in complying packages.
· in order to specify component implementation specific constraints and verify them on a component instance model, structural assertions can also be specified the context of an Structural Contract Viewpoint. Structural assertions can be also attached to classifier types, specifying non-temporal constraints on its properties and features.
· in order to specify temporal behavior constraints on component interfaces, behavior assertions are specified on classifiers (component types, component implementations and feature groups), in the context of a Behavior Contract Viewpoint. They specify mandatory component interface behavior generic to all component implementations of the same type or specific to collections of subcomponents used in a particular component implementation.
(5) The grammar for creating and referencing Subset, Structural and Behavior Contract Viewpoints is also provided in this Annex.
Introduction

(6) The SAE Architecture Analysis & Design Language (referred to in this document as AADL) is a textual and graphical language used to design and analyze the software and hardware architecture of performance-critical real-time systems. These are systems whose operation strongly depends on meeting non-functional system requirements such as reliability, availability, timing, responsiveness, throughput, safety, and security. AADL is used to describe the structure of such systems as an assembly of software components mapped onto an execution platform. It can be used to describe functional interfaces to components (such as data inputs and outputs) and performance-critical aspects of components (such as timing). AADL can also be used to describe how components interact, such as how data inputs and outputs are connected or how application software components are allocated to execution platform components. The language can also be used to describe the dynamic behavior of the runtime architecture by providing support to model operational modes and mode transitions. The language is designed to be extensible to accommodate analyses of the runtime architectures that the core language does not completely support. Extensions can take the form of new properties and analysis specific notations that can be associated with components and are standardized themselves.
(7) AADL was developed to meet the special needs of performance-critical real-time systems, including embedded real-time systems such as avionics, automotive electronics, or robotics systems. The language can describe important performance-critical aspects such as timing requirements, fault and error behaviors, time and space partitioning, and safety and certification properties. Such a description allows a system designer to perform analyses of the composed components and systems such as system schedulability, sizing analysis, and safety analysis. From these analyses, the designer can evaluate architectural tradeoffs and changes.

(8) AADL supports analysis of cross cutting impact of change in the architecture along multiple analysis dimensions in a consistent manner. Consistency is achieved through automatic generation of analysis models from the annotated architecture model. AADL is designed to be used with generation tools that support the automatic generation of the source code needed to integrate the system components and build a system executive from validated models. This architecture-centric approach to model-based engineering permits incremental validation and verification of system models against requirements and implementations against systems models throughout the development lifecycle.
(9) This document consists of one annex to the SAE AADL standard that specifies a sub-language for expressing structural assertions on AADL instance models and a sub-language for specifying interaction patterns, expressed as temporal assertions on AADL feature groups, component types and component implementations.

Information and Feedback

(10) The website at http://www.aadl.info is an information source regarding the SAE AADL standard. The website provides information and a download site for the Open Source AADL Tool Environment. It also provides links to other resources regarding the AADL standard and its use.
(11) The public AAD Wiki (https://wiki.sei.cmu.edu/aadl) maintains a list of AADL related publications by the community, and provides guidance on the use of extension of the open source OSATE tool set for AADL.
(12) Questions and inquiries regarding working versions of annexes and future versions of the standard can be addressed to info@aadl.info.

(13) Informal comments on this standard may be sent via e-mail to errata@aadl.info. If appropriate, the defect correction procedure will be initiated. Comments should use the following format:

 !topic Title summarizing comment

 !reference AADL-ss.ss(pp)

 !from Author Name yy-mm-dd

 !keywords keywords related to topic

 !discussion

 text of discussion

(14) where ss.ss is the section, clause or subclause number, pp is the paragraph or line number where applicable, and yy-mm-dd is the date the comment was sent. The date is optional, as is the !keywords line.

(15) Multiple comments per e-mail message are acceptable. Please use a descriptive “Subject” in your e-mail message.

(16) When correcting typographical errors or making minor wording suggestions, please put the correction directly as the topic of the comment; use square brackets [] to indicate text to be omitted and curly braces { } to indicate text to be added, and provide enough context to make the nature of the suggestion self-evident or put additional information in the body of the comment, for example:

 !topic [c]{C}haracter

 !topic it[']s meaning is not defined

1 References

1.1 Normative References

(17) The following normative documents contain provisions that, through reference in this text, constitute provisions of this standard.

(18) IEEE/ANSI 610.12-1990 [IEEE/ANSI 610.12-1990], IEEE Standard Glossary of Software Engineering Terminology.

(19) Unified Modeling Language Specification [UML 2007, version 2.1.1], August 2007, version 2.1.1.

(20) SAE AS-5506A:2009, Architecture Analysis & Design Language (AADL), Jan 2009.

(21) SAE AS-5506/1:2006, Architecture Analysis & Design Language (AADL) Annex Volume 1, June 2006.
(22) TBD.
1.2 Informative References

(23) The following informative references contain background information about the items with the citation.

(24) [BNF 1960] NAUR, Peter (ed.), "Revised Report on the Algorithmic Language ALGOL 60," Communications of the ACM, Vol. 3 No. 5, pp. 299-314, May 1960.

2 Model Constraints Sublanguage
2.1 Scope

(1) The Model Constraints Sublanguage Annex (or in short the Constraints Annex) provides a standard AADL sublanguage extension with three major objectives:

· to allow specification of project specific AADL language subsets and enforce consistent use of the language subset over all classifiers in a package and all packages in a project

· to allow specification of project specific Structural Assertions on AADL instance models of component implementations and specification of Structural Assertions on classifier types (component types, feature group types and their extensions)

· to allow the specification of Behavior Assertions for feature groups, component types and component implementations, grouped as Assumptions and Guarantees. Assumptions group together Behavior Assertions describing expected behavior of the environment in which a component will operate. Guarantees group together Behavior Assertions which must be honored by all instances of the component, assuming that it is deployed into an environment that honors the Assumptions Behavior Assertions.
(2) Constraints expressed as Structural Assertions or Behavior Assertions can be declared in the context of an analysis specific Contract Viewpoint. It is assumed that a Contract Viewpoint defines a certain type of static model analysis that will succeed if all the Structural Assertions or Behavior Assertions defined in the context of that particular Viewpoint hold true.
(3) Structural Assertions are used for enforcing project specific choices or constraints, for example they can be used to enforce globally in an instance model the presence or the absence of a certain Property or Property Value.
(4) Structural Assertions can be used to add semantics to project specific Property Sets and Property Values. For instance, a certain global budget constraint can be enforced for a specific Property Type for all sub-components in an instantiation of a System, as in “The total power used by all sub-components of this System should less than …”. They can be also used to enforce consistency and completeness of Property Associations, as in “If Property X.length is specified in mm units, than X.width must be specified in mm units.”

(5) Some projects use a central AADL model repository, from which external model analysis tools would independently build their own model abstractions and perform a viewpoint specific static analysis. Structural Assertions can be used to capture assumptions on Property Sets shared by viewpoint specific analysis tools, as well as capture the assumptions of viewpoint specific model abstractions.

(6) Some projects might want to enforce the use across the project of a consistent AADL language subset and/or consistent option choices by defining them as a set of Structural Assertions.

(7) Structural Assertions, grouped in Contract Viewpoints, can be declared in Constraint Annex subclauses of component implementations, in which case they will be evaluated on the instance model of the component implementation.

(8) Structural Assertions declared in the Constraint Annex subclauses of classifier types (component types and feature group types) are evaluated within the scope of the classifier type observable features and properties.

(9) Structural Assertions declared for the purpose of enforcing a project specific AADL language subset, are declared in a Package Constraint Annex library and enforced for all classifiers of compliant packages.

(10) Behavior Assertions are used to specify run-time execution semantics on collection of features; such a collection of features may be declared as a feature group, or as a component type or it could be a collection of interface features of sub-components in a component implementation.

2.2 Overview of the Model Constraints Sublanguage Concepts

(1) Constraints can be declared in Constraint Annex sub-clauses for AADL classifiers: feature groups, component types, component implementations and their extensions. Constraint sublanguage constructs in classifier subclauses can reference global scope constants and functions declared in Constraint Annex libraries of AADL packages. Local scope constants and functions can be declared also in a Constraint Annex subclause of a classifier, and referenced in that subclause or in Constraint Annex subclauses added to extensions of that classifier.
(2) Contract Viewpoints must be declared in a package Constraint Annex library; their purpose is to group constraints into identifiable sets, subject to the same contract enforcement policy, specified at the time of the Contract Viewpoint declaration. Three types of contract enforcement policies are defined: subset_contract, structural_contract and behavior_contract.

(3) A subset_contract Viewpoint must be declared in a Constraint Annex library of a package. Its name is associated with a script, containing constraints declared in a Structural Assertion sublanguage. The name of such a subset_contract Viewpoint, can be referenced in an ``enforce`` declaration appearing in Constraint Annex libraries of other packages, in order to declare their compliance to the structural constraints expressed by the named subset_contract Viewpoint. This type of contract viewpoint can be used to declare and enforce AADL language subsets and/or project specific choices for optional AADL features.

(4) In a package enforcing a subset_contract, the structural constraints are checked when the Viewpoint is verified on demand. Supporting tools might also choose to enforce continuously the use of an AADL language subset, verifying compliance any time a new classifier is added to the package, when existing classifiers change or when the imported package list is modified.

(5) The name of a structural_contract Viewpoint, declared in a Constraint Annex library of a package, can be referenced in Constraint Annex subclauses added to classifiers and their extensions in other packages. Constraints are declared in the Constraint Annex subclause of the classifier, in a Structural Assertions sublanguage, within a script prefixed by the name of pre-declared structural_contract Viewpoint. Scripts for multiple structural_contract Viewpoints might appear for the same classifier, documenting multiple categories of requirements.

(6) The script attached to the structural_contract Viewpoint in the Constraint Annex subclause of a classifier is evaluated when the Viewpoint is verified, only if an enforce statement referencing the Viewpoint name appears in the same Constraint Annex subclause. For component implementations, the Structural Assertions script is checked against the instance model having as root the component implementation they are attached to. For classifier types (component and feature group types), the constraints expressed in the Structural Assertions sublanguage can reference only features and properties within the scope of the classifier type.

(7) The name of a behavior_contract Viewpoint, declared in a Constraint Annex library, can be referenced in Constraint Annex subclauses added to classifiers, such as feature groups, component types, component implementations and their extensions. Constraints are declared in the Constraint Annex subclause of the classifier, in a Behavior Assertions sublanguage, within a script prefixed by the name of a pre-declared behavior_contract Viewpoint. Scripts for multiple behavior_contract Viewpoints might appear for the same classifier, documenting multiple categories of formal functional requirements.

(8) The script attached to the behavior_contract Viewpoint in the Constraint Annex subclause of a classifier is evaluated when the Viewpoint is verified on demand, only if an enforce statement referencing the Viewpoint name appears in the same Constraint Annex subclause.

(9) The Behavior Assertions in each behavior_contract script can reference only the classifier features and features of subcomponents directly contained by the classifier. Such a contract must be checked against same viewpoint contracts of other classifiers, for every instance when that particular classifier is referenced in the context of other classifiers, either as a type extension, as a subcomponent declaration or refinement or as a new implementation of a component type. All Behavior Assertion constraints declared within scripts of the same behavior_contract viewpoint for different classifiers have to be compositionally checked, for example:
· when a new feature group specification is declared, referencing lower level feature group specifications, the script declared within the same behavior_contract Viewpoint of the new feature group must be checked for consistency against the scripts within the same Viewpoint declared by the lower level feature group specifications. This check must also be performed when the feature group type is extended or changed.
· when a new component type is declared or a component type is extended or changed, the behavior_contract Viewpoint script declared in its Constraint Annex subclause must be checked for consistency against the scripts declared in the same Viewpoint for all the referenced feature groups.
· when a new component implementation is declared containing subcomponent declarations, its behavior_contract script has to be checked for consistency with the same viewpoint scripts of the subcomponent classifiers. This check must also be performed on component implementation extensions or changes.
2.2.1 Constraint Annex Library Grammar

(1) Constraint Annex Libraries can be declared for any AADL package. A Constraint Annex Library can contain:

· Declarations of contract Viewpoint names and enforcement policies. Such names can be referenced in Constraint Annex Libraries of other packages or Constraint Annex subclauses attached to classifiers.

· Scripts specified in a Structural Assertions sublanguage, defining constraints that define an AADL language subset and/or project specific option choices. Such scripts must be specified when declaring a new contract viewpoint name with a subset_contract enforcement policy

· Generic reusable constraint sublanguage constructs, such as functions and constants that can be reused in Structural Assertions and Behavior Assertions appearing in Constraint Annex subclauses attached to classifiers.

· Declarations of reusable state sequence (temporal) expressions templates that can be referenced elsewhere in Behavior Assertions.
Syntax

constraint_annex_library ::=

 [viewpoint {declaring_viewpoint_name enforcement_policy

 [applies_to_clause] [structural_constraint_script]}+;]

 [enforce {viewpoint_reference }+ ;]

 [types { type_declaration }+]

 [constants { constant_declaration }+]

 [functions { function_declaration }+]

 [sequence expressions { sequence_expression_declaration }+]

enforcement_policy ::=

 subset_contract | structural_contract | behavior_contract

applies_to_clause ::=

 applies to classifier_category {, classifier_category}*
classifier_category ::=

 (component_category [implementation] | feature group)
subset_contract ::=
 subset contract

structural_contract ::=

 structural contract
behavior_contract ::=

 behavior contract
viewpoint_reference ::=

 enforcement_policy : declared_viewpoint_name

structural_constraint_script ::=

 { theorem_declaration }+
Semantics

(1) .
Naming Rules

(N1) TBD
Legality Rules
(L1) In a viewpoint declaration, a structural_constraint_script must be specified if the enforcement policy is subset_contract.
(L2) If the enforcement policy in the viewpoint declaration is either structural_contract or behavior_contract, no assertion script will be present in the Constraint Annex Library. Assertion scripts for declared structural_contract or behavior_contract viewpoints will appear in the Constraint Annex subclause of classifiers enforcing that viewpoint.
(L3) An enforce declaration in an Constraint Annex Library can reference only viewpoints with a subset_contract enforcement policy, declared in other packages or the same package.

Consistency Rules

(C1) In a viewpoint_reference, the enforcement_policy qualification of the referenced viewpoint is provided for readability and must be the same as the one specified in the viewpoint declaration.

Examples

-- This example shows TBD

2.2.2 Constraint Annex Subclause Grammar

(1) Constraint Annex subclauses can be declared for classifiers. A Constraint Annex subclause can contain

· Reusable constraint sublanguage constructs, such as user defined types, constants, functions and sequence expressions can be declared and reused within the scope of the same Constraint Annex subclause.

· A Constraint Annex subclause attached to a classifier can reference multiple structural_contract viewpoint names and declare for each one an associated Structural Assertions script. The evaluation scope of the Structural Assertion scripts is different for classifier types versus component implementations:

· For a classifier type, a Structural Assertion script can reference directly only the classifier features and its properties and is evaluated within the scope of the classifier type

· For a component implementation, a Structural Assertion script can reference its associated classifier type features and its properties, as well as the features and properties of all subcomponents of the instance model of the component implementation, referencing other classifiers.
· A Constraint Annex subclause attached to any classifier can reference multiple behavior_contract viewpoint names and declare for each one associated Behavior Assertions scripts

· Only scripts associated with a viewpoint referenced in an enforce statement, appearing in the same Constraint Annex subclause, are considered active and will be executed when verifying a contract viewpoint.
Syntax

constraint_annex_subclause ::=
 [types { type_declaration }+]
 [constants { constant_declaration }+]

 [functions { function_declaration }+]

 [sequence expressions { sequence_expression_declaration }+]

 [{viewpoint_reference (structural_constraint_script | behavior_constraint_script)}+ ;]

 [enforce { viewpoint_reference [in_binding] }+ ;]

behavior_constraint_script::=

 { assumption_guarantee_declaration }+
Semantics

(1) A viewpoint reference must appear at most once in a Constraint Annex subclause of a classifier, in order to declare the structural contract script or behavior contract script specific to the classifier for that contract viewpoint.

(2) A Structural Contract is expressed as a structural_constraint_script prefixed by a structural_contract viewpoint reference and may appear in the Constraint Annex subclause of a either a classifier type or a component implementation.

(3) For a classifier type, an enforce statement referencing the same structural_contract viewpoint as the script, appearing in the same subclause, has the effect of verifying the structural_constraint_script on the features and properties of the classifier type.

(4) For a component implementation, an enforce statement referencing the same structural_contract viewpoint as the script, appearing in the same subclause, has the effect of verifying the structural_constraint_script on the instance model of the component implementation. An optional in_binding construct can explicitly specify a list of platform classifier references for which this verification will be performed.

(5) A Behavior Contract is expressed as a behavior_assert_script prefixed by a behavior_contract viewpoint reference, and may appear in the Constraint Annex subclause of any classifier. It formally describes expected behavior of all instances of that particular classifier, stemming from the larger set of functional requirements specific to the viewpoint.
(6) An enforce statement in the same subclause of a classifier, referencing the same behavior_contract viewpoint as the behavior_constraint_script, will make the script active when that contract viewpoint is verified. It has the effect of verifying the behavior_constraint_script, for all references to this classifier as a subcomponent of other classifier instances, compositionally with Behavior Contracts of other classifiers.

Naming Rules

(N2) All constants, predicates, functions, and sequence expressions declared in the Constraint Annex subclause can be referenced only within the subclause.

(N3) All constants, predicates, functions, set relations and sequence expressions declared in Constraint Annex libraries can be referenced in all Constraint Annex subclauses of classifiers, following the cross package reference rules.

Legality Rules
(L4) TBD
Consistency Rules

(C2) TBD

Examples

2.2.3 Types, Constants, Functions and Expressions

(1) The Constraint Annex sublanguage defines multiple categories of user defined types, typed constants and variables declared in the types, constants or functions sections of the Annex subclauses, in theorems and in some language constructs. There are three categories of typed constants and variables:

1. Basic Types are the same as the AADL core property types: aadlboolean, aadlstring, the number types (aadlinteger and aadlreal), enumerations, units, etc. Users can declare their own named types referencing basic types.
2. Element Types represent AADL meta-model objects instantiated in concrete user models; they are subject to constraints expressed in scripts attached to viewpoints. A hierarchy of element types is defined. These types are finite sets of user model elements, relating to each other according to relationships defined by the core AADL component model. Element types are context dependent, in the sense that individual members of a particular element type set depend on the definition of the total model subset searched. For every element type, built-in functions are pre-defined, returning individual or set of elements, obtained by navigating various relationships of the AADL core meta-model, calculated in the context of a specified classifier parameter. If such a classifier parameter is not specified, the pre-defined built-in functions will assume as default parameter the classifier context of the constraint script making the call.

3. Composite Types include collections of basic types or elements, such as sets, lists, records and unions. Both constant and variable composite types can be constructed and referenced in constraint script expressions. The keyword voidset is used as a denotation for an empty set or an empty list.
(2) The grammar for declaring basic types constants is a subset of the core AADL Property Types grammar.
(3) The distinguished type anytype is the root of the hierarchy of all types. Any constant or variable referenced in constraint scripts belongs to the anytype type or one of its sub-types, which could be a basic type, an element type or a composite type.
(4) In user defined function declarations, the formal parameters type may be explicitly declared or may be omitted. If it is omitted, the type of a formal parameter is by default assumed to be the root type anytype.
(5) The distinguished type T_Element is the root of the hierarchy of element types. An element is uniquely identified by an element id, which is an aadlstring identifying the model element in the concrete user model. Pre-defined built-in functions and user defined functions with explicitly declared element types formal parameters will always accept sub-types as actual parameters, according to the element type hierarchy declared below.
(6) Local variables in theorems and functions can have their type explicitly declared or inferred from their use in a particular language construct. For instance, variables ranging over a set do not need to be declared and are assumed to have the same type as the elements of the set. Variables assigned without being declared will be assumed to take the type of the expression they are assigned to and inconsistencies will be flagged as errors.
(7) Different implementations of the Constraint Annex sublanguage might choose to enforce static type checking for constants and variables with explicitly declared types used in operations and as actual arguments of functions. All implementations should enforce dynamic typing.
Syntax
type_expression ::=

basic_type | element_type | composite_type | anytype
-- reusable user defined types are declared in the types section of Constraint Annex

-- libraries or subclauses

type_declaration ::=

unique_type_identifier : type type_expression ;

basic_type ::=

aadlboolean |

aadlstring |

number_type|

enumeration_type |

units_type |

range_type |

classifier_type |

reference_type |

unique_type_identifier
-- number_type,enumeration_type,units_type,range_type,classifier_type, etc.. are
-- as defined in the AADL core grammar
-- element_type will be defined later; composite_types are structured collections

-- with members of any type

composite_type ::=

set_type |

list_type |

map_type |

record_type |

union_type;
id_type_pair := defining_identifier : type_expression
set_type ::= set of type_expression

list_type ::= list of type_expression

map_type ::= map from type_expression to type_expression
record_type ::= record (id_type_pair {, id_type_pair}*)
union_type ::= union ([defining_identifier :] type_expression {| [defining_identifier :] type_expression }*)
-- reusable constants are declared in the constants section of Constraint Annex

-- libraries or subclauses. A constant expression is an expression rooted in

-- basic types and their composites, i.e. it does not reference context dependent

-- element types and therefore it evaluates the same in the context of any classifier

-- the grammar rule for constant_expression is defined later. A constant takes the
-- type of its constant_expression if its type is not explicitly declared
constant_declaration ::=

constant_identifier [: type_expression] := constant_expression ;
-- variables are declared in procedural functions and in theorems; an initial
-- value expression must be provided. If a type expression is not specified,
-- the variable will take the most specific type compatible to its initial value

-- grammar rule for expression is defined later
variable_declaration ::=

var variable_identifier [: type_expression]:= expression ;

-- right hand expression is the initial value

-- Two types of functions are defined in the sublanguage
-- 1. Parameterized function expressions

-- 2. Procedural functions, having a body of executable statements
function_declaration ::=

function_expression | procedural_function

function_expression ::=

function_identifier [(argument_list)]
[returns type_expression] := expression ;

procedural_function ::=

 function_identifier [(argument_list)]

returns type_expression := function_body ;

argument_list ::= argument {, argument}*

argument ::= identifier[: type_expression]
-- if type of argument is omitted, it is by default assumed to be of type anytype

function_body ::=

{ local_declarations {function_statement}+ }

local_declarations ::=

{constant_declaration | variable_declaration}*
basic_statement ::=

assignment | condition_statement | iteration | case_statement
function_statement ::=

basic_statement | return_statement
theorem_statement ::=

basic_statement | check_expression ;
-- check_expression are used only in theorems, defined later
(8) The assignment operator := evaluates the right hand side expression to a value or a set and assign it to the variable identified in the left hand side.
(9) An iteration, introduced by the keyword foreach, would assign to an iteration variable var_id every member of the set expression and execute the statements after the do keyword with var_id having the assigned value.
(10) An iteration introduced by the keyword while would re-evaluate its Boolean expression on every iteration and execute the statements after the do keyword while it is true.
A return statement is used only in procedural functions; it can’t be used in the body of a foreach or while iteration statement. As there is no conditional execution flow of control in procedural functions, the return statement will always be the last statement in a procedural function.
assignment ::=

variable_identifier := expression ;
iteration ::=

(foreach variable_identifier in expression do
{ {function_statement | theorem_statement | break_statement}+ } |

 while expression do { {function_statement | theorem_statement}+ }) ;

break_statement :=

break;

condition_statement ::=

if boolean_expression then basic_statement [else basic_statement] end ;

case_statement ::=

case expression is { case_normal_element }* [case_else_element];

case_normal_element ::= when constant_expression : basic_statement ;

case_else_element ::= else : basic_statement

return_statement ::=

return expression ;

function_call ::=

function_identifier [(actual_argument_list)];

actual_argument_list ::=

expression {, expression}*
-- boolean_term, integer_term, real_term, string_term etc.. are as defined in AADL Core

-- property_expression. This assumes that Property Constants of model elements can be

-- referenced directly from the Constraint Annex sublanguage

expression ::=

(expression)
-- prioritize the order of computation by parentheses

| e_boolean_term

| e_number_term

| e_string_term

| enumeration_term
-- from AADL core

| unit_term

-- from AADL core

| e_range_term

| e_record_term

| constant_identifier

| variable_identifier [element_cast_operator] -- see element types

| function_call [element_cast_operator]

| if_expression

| set_expression

| list_expression

| map_expression

| iterate_expression

| local_var_expression

| e_reference_expression

e_boolean_term ::=

-- priority: ==> > compare >or>and>not

 boolean_term

-- from AADL core (includes or,and,not)

| expression ==> expression

| expression compare_op expression

| expression in set_expression
-- “contains” predicate

compare_op ::=

= | <> | != | < | > | >= | <=

e_number_term ::=

 number_term

--from AADL core

| expression arithmetic_operator expression

| round expression

-- convert real to integer by rounding

| floor expression

-- convert real to integer by flooring

| ceil expression

-- convert real to integer by ceiling

| expression in units: unit_term
-- convert value of number with units

-- expression to unit_term

arithmetic_operator ::=

+ | - | * | div | mod | / | **

e_string_term ::=

| string_term

-- from AADL core

| expression + expression
-- string concatenation

| length expression

-- length of a string

| string expression

-- convert value of expression to string

e_range_term ::=

integer_range_term

-- from AADL core

| real_range_term

-- from AADL core

| lower expression

-- lower bound of range expression

| upper expression

-- upper bound of range expression

| delta_exists expression
-- true if delta declared for range term

| delta of expression

-- error if delta not declared,otherwise delta

e_record_term ::=

record_term

-- from AADL core

| record_expression . record_field_identifier -- get value of field

| record_expression with (record_field_identifier => expression ;

 { record_field_identifier => expression ; }*) -- get record with

 -- modified field values

list_expression ::= TBD

map_expression ::= TBD

if_expression ::=

if expression then expression else expression

iterate_expression ::=

iterate collection by variable_identifier

initial := expression ;

next := expression ;
-- using keyword old and variable_identifier

collection ::=

set_expression

| list_expression

| map_expression

-- set, list , map

set_expression ::=

set_literal

-- generate set by enumerate its elements

| set_comprehension

-- generate set from another set

| set_arithmetic

-- generate set by union and intersection

set_literal ::=

{ [expression { , expression }*] }

set_comprehension ::=

{ expression for variable_identifier in set_expression

[when_operator boolean_expression] }

when_operator ::=

when | | | : | such as

set_arithmetic ::=

set_expression + set_expression
-- union

| set_expression * set_expression
-- intersection

local_var_expression ::=

let variable_declaration { , variable_declaration }* in expression

e_reference_expression ::=

reference_expression

| property_reference

reference_expression ::=

self

-- self is the root classifier element and

-- top component instance

| e_component_classifier_term

| e_reference_term

| containment_set

-- generate set of elements via AADL containment

property_reference ::=

property_constant_term

-- from AADL core

| (property_property_term of reference_expression [in_binding])

-- value of a defined property,

-- error if undefined,

-- possible binding specific

| (property property_term exists in reference_expression [in_binding])

-- true if property defined, false otherwise

| (defined properties of reference_expression [in_binding])

-- returns set of defined properties for the

-- target reference expression, possible

-- specific to a binding

e_component_classifier_term ::=

-- this is one of the links between AADL core syntax and Constraint Annex

-- element types. The keyword classifier followed by the qualified name of

-- a classifier is automatically converted to T_Classifier element type

component_classifier_term

-- as in AADL core

classifier unique_feature_group_type_reference
-- missing in AADL core

-- the qualified name of any classifier can be casted to the appropriate

-- T_Classifier element subtype

string_expression cast as T_Classifier_subtypes

e_reference_term ::=

-- this is another link between AADL core syntax and the Constraint Annex

-- element types. The keyword reference followed by the contained model

-- element path is automatically converted to T_Named_Reference element

-- type, the super type of all named references

reference_term

-- as in AADL core

-- a contained model element path string can be casted to the appropriate

-- T_Named_Reference subtype

string_expression cast as T_Named_Reference_subtypes
(11)
 Element types are named using the following syntax:

T _ element_category

where element_category is chosen using keywords and symbolic names of non terminals from the AADL core grammar.

element_type ::=
T_Element |

-- the super-type of all AADL meta-model elements
T_Classifier_subtypes |
T_Named_Reference_subtypes |

T_Prototype_Binding | T_Prototype_Actual

T_Classifier_subtypes ::=
T_Classifier | T_Component_Type_Classifier | T_Component_Impl_Classifier |

T_Feature_Group_Classifier

T_Named_Reference_subtypes ::=

T_Named_Reference |

-- super-type of all references to

-- subcomponents of classifiers

T_Subcomponent_subtypes | T_Call_subtypes | T_Connection_subtypes |

T_Feature_subtypes | T_Flow_Spec_subtypes | T_Flow_Impl_subtypes |

T_End_To_End_Flow |

T_Prototype |

T_Prototype_Ref
T_Subcomponent_subtypes ::=
T_Subcomponent |

T_Component_Type_Ref | T_Component_Impl_subtypes

T_Component_Impl_subtypes ::=

T_Component_Impl |

T_Abstract | T_System | T_Processor | T_Virtual_Processor |

T_Bus | T_Virtual_Bus | T_Memory | T_Process | T_Thread_Group |

T_Thread | T_Thread_Data | T_Subprogram | T_Subprogram_Group

T_Call_subtypes ::=

T_Call |

T_Subprogram_Call | T_Call_Sequence

T_Connection_subtypes ::=

T_Connection |

T_Feature_Connection | T_Port_Connection |

T_Parameter_Connection | T_Access_Connection |

T_Feature_Group_Connection

T_Feature_subtypes ::=

T_Feature |

T_Abstract_Feature | T_Parameter | T_Feature_Group | T_Port_subtypes |

T_Access_subtypes

T_Port_subtypes ::=

T_Port |

T_Data_Port | T_Event_Port | T_Event_Data_Port

T_Access_subtypes ::=

T_Access | T_Data_Access | T_Subprogram_Access |

T_Subprogram_Group_Access | T_Bus_Access

T_Flow_Spec_subtypes ::=

T_Flow_Spec | T_Flow_Spec_Source | T_Flow_Spec_Sink | T_Flow_Spec_Path

T_Flow_Impl_subtypes ::=_

T_Flow_Impl | T_Flow_Impl_Source | T_Flow_Impl_Sink | T_Flow_Impl_Path

(12) Explicit conversion from more generic to more specific element types is supported through the cast as construct, This construct can optionally appear in expressions after a variable identifier or function call, having one of the types defined by element_type. An error will be flagged if the element_type at the right of the cast as operator is not a subtype of the original type of the variable identifier or function call. The grammar rule is:

element_cast_operator ::=_

-- used optionally after element

cast as element_type
-- variables or functions to cast to

-- a more specific subtype

(13) The following table summarizing the type hierarchy of model elements:
	
	Element Type
	Definition

	1
	T_Element
	Any model element

	2
	
	T_Classifier
	Component types, component implementations and feature groups declared in AADL packages. They can have a Constraint Annex subclause with constraint scripts, evaluated always in the model subset context provided by the classifier.

	3
	
	
	T_Component_Type_Classifier
	Component Types and their extensions declared in packages

	4
	
	
	T_Component_Impl_Classifier
	Component Implementations and their extensions declared in packages

	5
	
	
	T_Feature_Group_Classifier
	Feature Group Types and their extensions declared in packages

	6
	
	T_Named_Reference
	

	7
	
	
	T_Subcomponent
	Named references to Component Types and Component Implementations, declared as subcomponents of Component Implementations

	8
	
	
	T_Component_Type_Ref
	Component Type references of all categories

	9
	
	
	T_Component_Impl
	Component Implementations references of all categories

	10
	
	
	
	T_Abstract
	Abstract Component Implementation reference

	11
	
	
	
	T_System
	System Implementation reference

	12
	
	
	
	T_Device
	Device Implementation reference

	13
	
	
	
	T_Processor
	Processor Implementation reference

	14
	
	
	
	T_Virtual_Processor
	Virtual Processor Implementation reference

	15
	
	
	
	T_Bus
	Bus Implementation reference

	16
	
	
	
	T_Virtual_Bus
	Virtual Bus Implementation reference

	
	
	
	
	T_Memory
	Memory Implementation reference

	
	
	
	
	T_Process
	Process Implementation reference

	
	
	
	
	T_Thread_Group
	Thread Group Implementation reference

	
	
	
	
	T_Thread
	Thread Implementation reference

	
	
	
	
	T_Data
	Data Implementation reference

	
	
	
	
	T_Subprogram
	Subprogram Implementation reference

	23
	
	
	
	T_Subprogram_Group
	Subprogram Group Implementation reference

	24
	
	
	T_Call
	Any type of call references in component_implementations

	25
	
	
	T_Subprogram_Call
	Subprogram Call

	26
	
	
	T_Call_Sequence
	Call Sequence

	27
	
	
	T_Connection
	Any type of connection referenced in component implementations

	28
	
	
	T_Feature_Connection
	Feature Connection

	29
	
	
	T_Port_Connection
	Port Connection

	30
	
	
	T_Parameter_Connection
	Parameter Connection

	31
	
	
	T_Access_Connection
	Access Connection

	32
	
	
	T_Feature_Group_Connection
	Feature_Group_Connection

	33
	
	
	T_Feature
	Any type of feature reference in classifiers and subcomponents

	34
	
	
	T_Abstract_Feature
	Abstract feature

	35
	
	
	T_Parameter
	Parameter

	36
	
	
	T_Feature_Group
	Feature Group

	37
	
	
	T_Port
	Any type of Port

	38
	
	
	T_Data_Port
	Data Port

	39
	
	
	T_Event_Port
	Event Port

	40
	
	
	T_Event_Data_Port
	Event Data Port

	41
	
	
	T_Access
	Any type of access

	42
	
	
	T_Data_Access
	Data Access

	43
	
	
	T_Subprogram _Access
	Subprogram Access

	44
	
	
	T_Subprogram_Group_Access
	Subprogram Group Access

	45
	
	
	T_Bus_Access
	Bus Access

	46
	
	
	T_Flow_Spec
	Any type of Flow Specifications contained by component types

	47
	
	
	T_Flow_Spec_Source
	Flow Source Specification

	48
	
	
	T_Flow_Spec_Sink
	Flow Sink Specification

	49
	
	
	T_Flow_Spec_Path
	Flow Path Specification

	50
	
	
	T_Flow_Impl
	Any type of Flow Implementations contained in component implementations

	51
	
	
	T_Flow_Impl_Source
	Flow Source Implementations

	52
	
	
	T_Flow_Impl_Sink
	Flow Sink Implementations

	53
	
	
	T_Flow_Impl_Path
	Flow Path Implementations

	54
	
	
	T_End_To_End_Flow
	End to end Flow contained in component implementations

	55
	
	
	T_Prototype
	Prototypes declared in classifiers

	56
	
	
	T_Prototype_Ref
	Prototypes referenced in classifier extensions or subcomponents

	57
	
	T_Prototype_Binding
	Prototype bindings on classifier references

	58
	
	T_Prototype_Actual
	Prototype actual parameter, either another prototype or a classifier reference

(14) There exists a pre-defined type element_category (rooted in aadlinteger) and literal constants with the name of each element category specific to every element type defined above.
element_category: type aadlinteger 1..58;

Element: constant element_category := 1;
Classifier: constant element_category := 2;

Component_Type_Classifier constant element_category = 3;
Component_Impl_Classifier constant element_category = 4;
Feature_Group_Classifier constant element_category = 5;
Named_Reference constant element_category = 6;

Subcomponent: constant element_category := 7;

Component_Type: constant element_category := 8;

Component_Impl: constant element_category := 9;

…

Prototype_Actual: : constant element_category := 58;

2.2.4 Pre-defined sets and model relationship functions

(1) This section describes the pre-defined model access functions that can be called either in user defined functions or directly in structural_constraint_scripts and behavior_constraint_scripts.

(2) The following pre-defined functions exist:

Element_Is_A (category_literal : element_category,

 element : T_Element) returns aadlboolean;

-- takes as its second argument a model element of any element_type and returns true if the element category matches the category_literal passed as its first argument.

Example of use:

· assuming port_element is a model element of type T_Port

· Element_Is_A(Feature_Group, port_element) returns false
· Element_Is_A(Feature, port_element) returns true, as in the type hierarchy a Port is a Feature

· Element_Is_A(Element, x) returns true for any element type x

 Element_Category_Of (element :T_Element) returns element_category;

 -- returns the most specific element category of its argument
(3) Elements are related to each other through the hierarchical containment relationship defined by the AADL core standard, as well as other relationships present in the AADL meta-model. The Constraint Annex sublanguage provides predefined built-in functions to navigate the following AADL relationships:
	Direct AADL relationship name
	Pre-defined (built-in) functions for relationships navigation
	Inverse AADL relationship name

	
	One-hop relationship navigation function
	Transitive relationship navigation function
	 Direct Relationship Check function
	

	Contains reference
(owns)
	Yes, Set Function
	Yes, Set Function
	Yes, Boolean Function
	Contained reference

(owned_by)

	Inter-classifier relationships:
- implements,

- extends / refined to,
- renames
- inverse_of
	Yes, Scalar Function
	
	
	

	Prototype relationships:
prototype_bindings
actual_bindings

	Yes, Set Function
	
	
	

	Properties and property bindings

	Yes, Scalar and Set see property_reference grammar rule
	
	Yes, Boolean see property_reference grammar rule
	

	Bound to platform **)

Note: this is not actually part of the language, but achieved through a pre-defined property

	Yes, Scalar Function, user defined
	
	Yes, Boolean Function, user defined
	

2.2.5 Pre-defined sets for the AADL subcomponent containment relationship

(4) The hierarchical containment relationship defined by the AADL core standard is supported through a language construct that calculates the set of directly contained subcomponents or transitively contained subcomponents for any AADL meta-model element that has a container structure, starting from a specified root classifier element. If the root element is omitted, it is assumed that the root element is the classifier owner of the constraint script annex.
(5) A generic language construct is provided for all possible containment combinations
Syntax
containment_set ::=

[direct] set of element_type [from root_element_identifier]
(6) A containment_set of elements can be used as a term in any set expression. The semantics of this construct is to calculate the set of a specified element type contained directly or transitively in a root element of a given type. The construct will return a voidset if no elements of the sought after type are found to be contained. If the keyword direct is omitted, then the resulting set is calculated transitively; if it is present, only the directly contained elements are considered.
Examples:
1. The function

Thread_Set(system : T_System) := set of T_Thread from system;

when called will return all the thread components contained transitively starting from the actual parameter of type T_System.
2. The function

Thread_Set := set of T_Thread from self;

If the call to this function appears in the Constraint Annex subclause of a classifier, by default that classifier will be considered as the root of the containment hierarchy.
3. Assuming a model element proc of type T_Process, which means that proc is a reference to a process implementation, the construct
set of T_Device from proc

will evaluate to the voidset, as in the AADL containment hierarchy a Process can’t contain a Device.
4. A function

Thread_Set(anyelement : T_Element) = set of T_Thread from anyelement;

will accept any element type, evaluate to the voidset for the elements that do not contain threads and return the set of transitively contained threads for element types that can contain threads.

5. Assuming the T_Component_Type model element called mythread_type, which is a reference to a thread type declared as a subcomponent of an enclosing component implementation
direct set of T_Feature from mythread_type

will evaluate to the set of all features declared by mythread_type, while
set of T_Feature from mythread_type

will evaluate to the set of all features directly declared by mythread_type or transitively contained in hierarchical feature groups

direct set of T_Data_Port from mythread_type

will evaluate to the set of data ports declared by mythread_type, a subset of all mythread_type features.
6. Assuming the T_Thread thread implementation reference called mythread, which is a reference to a thread implementation declared as a subcomponent of an enclosing component implemenrtation

direct set of T_Feature from mythread

will evaluate to the set of features directly referenced by the subcomponent mythread.

7. Assuming a T_Component_Impl_Classifier (component implementation classifier) mythread_type.impl, and a constraint script contained in its Constraint Annex subclause:
direct set of T_Feature from self
will evaluate to the voidset, as component implementation classifiers do not contain feature references. To obtain the component features, its associated component type classifier should be used.
(7) The following table summarizes the sets that can be calculated with the containment set construct. Note that using the type hierarchy, more specific sets of contained elements can be calculated.
	Direct AADL relationship name
	Applied to root
	Containment type

	Results in
	Inverse AADL relationship name

	Contains reference
(owns)

	Any

 T_Subcomponent
	Hierarchical
	T_SubComponent set

T_Call set

T_Connection set

T_ Flow_Impl set

T_Prototype set
T_Feature set
	Contained reference
(owner)

	
	Any

T_Classifier

	Hierarchical
	T_Feature set

T_ Flow_Spec set

T_Prototype set
	Not

supported

Not supported

	
	Any
T_Call_Sequence

	One level
	T_Subprogram_Call set
	

	
	Any

T_Feature_Group
	Hierarchical
	T_Feature set
	

	
	Any

T_Prototype_Binding
	One level
	T_Prototype_Ref set

T_Prototype_Actual set
	

	
	T_Prototype_Actual
	One level
	T_Subcomponent set

T_Prototype_Ref set
	

	
	T_Flow_Impl
	Hierarchical
	T_Subcomponent set

T_Connection set

T_Flow_Spec set
	

	
	T_End_To_End_Flow
	Hierarchical
	T_Subcomponent set

T_Connection set

T_Flow_Spec set

T_End_TO_End_Flow set
	

(8) For a hierarchical containment relationship in the above table, using the direct keyword will produce the sought after set of elements for the first level of containment. For one level, non-hierarchical containment relationships, the transitive form of the containment set construct will produce the same results as the direct form.
(9) The pre-defined boolean function Is_Subcomponent_Of can be used to test the transitive subcomponent relationship between its first and its second argument
Is_Subcomponent_Of (element1:T_Element, element2:T_Element) returns aadlboolean;
(10) The reverse relationship to subcomponent reference containment is supported by the pre-defined function Owner:

Owner (element :T_Element) returns T_Subcomponent;
 -- this function returns the subcomponent reference owning the T_Element element as a lower level subcomponent. It returns the root element, if the argument T_Element element is owned by the root reference with which the theorem has been invoked by a check theorem statement. This could be self,if the root element of the theorem is the classifier owning the script.
(11) An error is produced if such an owner is not foundThe following pre-defined functions are used to find the classifier type from a subcomponent reference to a component type, component implementation or a feature group type:

Classifier_Of (element :T_Component_Type_Ref) returns T_Component_Type_Classifier;
Classifier_Of (element :T_Component_Impl) returns T_Component_Impl_Classifier;

Classifier_Of (element :T_Feature_Group) returns T_Feature_Group_Classifier;

2.2.6 Pre-defined functions for inter-classifier relationships

(12) This section describes the pre-defined functions used for navigating the following relationships between AADL classifiers:

· implements

· extends / refined to
· renames
· inverse_of
(13) the following pre-defined functions exist:

Component_Type_Of (impl :T_Component_Impl_Classifier comp) returns T_Component_Type_Classifier;

-- this function returns the component type implemented by its classifier argument, which should be a component implementation classifier

Feature_Group_Type_Of (fg:T_Feature_Group) returns T_ Feature_Group_Type _Classifier;

-- this function returns the feature group type referenced by its argument, which should be a feature group subcomponent

Has_Extends (element :T_Classifier) returns aadlboolean;

-- this function returns a true if its argument classifier has an extends clause.
Extends_Reference_Of (element :T_Classifier) returns T_Classifier;

-- this function returns a classifier referenced by the extends clause of a component type, component implementation or feature group classifier. An error will occur if its argument does not have an extends clause.

Is_Renamed (element :T_Classifier) returns aadlboolean;

-- -- this function returns a true if its argument classifier has been renamed in this package.

Name_Of (element :T_Classifier) returns aadlstring;

-- -- this function returns the name of the Classifier as aliased in the current package

Unaliased_Name_Of (element :T_Classifier) returns aadlstring;

-- -- this function returns the fully qualified name of the Classifier before being renamed in this package

Subcomponent_Name_Of (element :T_Subcomponent) returns aadlstring;

-- -- this function returns the reference name of a subcomponent, as declared in its container

Path_Name_Of (element :T_Subcomponent) returns aadlstring;

-- -- this function returns the fully qualified name of a subcomponent, starting from its declaration in the root classifier container

Root_Classifier_Name_Of (element : T_subcomponent) returns aadlstring;

-- -- this function returns the name of the root classifier container of this subcomponent in the format <package_name>::<aliased_classifier_name>

Unaliased_Path_Name_Of (element :T_Subcomponent) returns aadlstring;

-- -- this function returns the fully qualified and unaliased name of a subcomponent, starting from the root classifier container

Has_Inverse (fg :T_Feature_Group_Classifier) returns aadlboolean;

-- -- this function returns true if its feature group argument classifier has an inverse of clause defined

Inverse_Of (fg :T_Feature_Group_Classifier) returns T_Classifier;

-- -- this function returns the feature group type classifier referenced in the inverse of clause of its feature group argument. An error occurs if the argument is not a feature group or if there is no inverse of clause.

2.2.7 Accessing properties of model elements

(1) The grammar rule for property_reference ensures that AADL model elements properties can be directly accessed in expressions of constraint scripts. Property constants can be used directly, by using the same syntax as the AADL core.

(2) The construct

 (property property_term exists in reference_expression [in_binding])
 evaluates to true if the property designated by property_term is defined for the classifier or subcomponent reference designated by reference_expression, with an optional in_binding specification. This construct is equivalent to the utility function property_exists in Lute/Real tools

(3) The construct

.
(property_property_term of reference_expression [in_binding])

evaluates to the value of the property designated by property_term, possible in a specific binding. An error is reported if the property is undefined. This construct is equivalent to the get_property_value utility function in Lute/Real tools l
(4) The construct

 (defined properties of reference_expression [in_binding])

evaluates to the set of defined properties for model element designated by the reference_expression,

possible in a specific binding.

(5) Various relationships between classifiers and subcomponent references expressed through property values can be supported as user defined libraries of functions. For instance, the Lute/Real relationship function Is_Bound_To can be implemented as a library function expression as follows:

union Platform_types (T_Processor | T_Virtual_Processor | T_Bus | T_Virtual_Bus | T_Device | T_Memory);

Is_Bound_To (subcomponent:T_Subcomponent, platform:Platform_types) returns aadlboolean :=

let

 var platform_type:aadlinteger := Element_Type_Of(platform)

in

 if ((property Deployment_Properties::Actual_Processor_Binding exists in subcomponent) and

 ((platform_type = Processor) or (platform_type = Virtual_Processor))

 then

 ((property Deployment_Properties::Actual_Processor_Binding of subcomponent) =

Path_Name_Of (platform))

 else

 if ((property Deployment_Properties::Actual_Memory_Binding exists in subcomponent) and

(platform_type = Memory)

 then

((property Deployment_Properties::Actual_Memory_Binding of subcomponent) =

Path_Name_Of (platform))

 else

if ((property Deployment_Properties::Actual_Connection_Binding exists in subcomponent)

then

 ((property Deployment_Properties::Actual_Connection_Binding of subcomponent) =

Path_Name_Of (platform))

else false;
2.2.8 Pre-defined type conversions
The following automatic type conversions are supported:
(14) Automatic type conversion is performed from integer to real in mixed real-integer arithmeric and comparison expressions
(15) Automatic type conversion is performed between AADL core component_classifier_term and the element type T_Classifier.

(16) Automatic type conversion of any AADL core classifier reference of the form
classifier (
component_type_reference |

component_implementation_reference |

feature_group_type_refernce)

to a T_Classifier element type defined in the Constraint Annex
(17) Automatic type conversion of any AADL core classifier reference of the form

reference (
contained_model_element_path)
to a T_Named_Reference element type defined in the Constraint Annex

(18) Explicit type conversions from legal string names of classifiers and contained subcomponents paths are also supported by using the cast as operator:

string_expression cast as T_Classifier_subtypes and

string_expression cast as T_Named_Reference_subtypes
(19) The following explcit conversions operators for real to integer conversions are supported:

round expression

-- convert real to integer by rounding

floor expression

-- convert real to integer by flooring

ceil expression

-- convert real to integer by ceiling

(20) Conversion between number with units expressions is supported by the construct

expression in units: unit_term

which converts value of an expression number with units to an explicit unit_term

(21) Type conversion from more generic to more specific element subtypes are supported through the cast as operator, used after variable identifiers or function calls returning an element type. Assuming a variable vthread of type T_Thread:

Owner(vthread) cast as T_Process

specifies that the T_Subcomponent returned by the function Owner is in fact a T_Process.

(22) Set to list: and list to set conversions TBD
2.2.9 Pre-defined utility functions for element types - TBD
(1) For access to classifier and subcomponent prototype bindings lists - TBD
(2) For any kind of T_Connection elements:

Source(conn : T_Connection) returns T_Feature;

Destination (conn : T_Connection) returns T_Feature;

2.2.10 Other pre-defined utility functions - TBD

TBD – Same as in Lute and Real
Syntax

TBD

Semantics

(1) TBD.
Naming Rules

(N1) TBD
Legality Rules

(L1) TBD
Examples

-- Next example shows TBD
2.3 Structural Assertions Sublanguage

(1) This section covers the language constructs used in scripts attached to Subset and Structural Contract Viewpoints. Such scripts contain a list of theorem declarations and labeled check statements. It is assumed that Viewpoints represent a category of requirement; theorems and check statements would be the formal way of capturing higher level requirements and verify their validity in a Viewpoint specific verification run. As such, it is expected that higher level requirements will be linked with theorems and check statements. A check statement is the most basic verification directive. A verification run on a Viewpoint will typically involve the execution of multiple check statements, possible in multiple scripts attached to the same Viewpoint, and will succeed only if all the check statements return a Boolean true value.

(2) Theorems are declared with a name and a body of statements and can be invoked in check statements. A theorem is always executed within the context of a root classifier. Theorem statements can reference built-in set building functions, which will operate always relative to the root classifier context.

(3) A theorem is invoked with an optional root_expression parameter, an expression which will evaluate to a set of classifier references. The theorem will execute as many times as references in the set, using on each execution one of the set members as a root classifier. No other parameters can be passed to theorems.
(4) For Structural Contract scripts attached to classifiers, when a theorem is invoked in the script without any parameter, the default set of root classifiers will have only one member, namely the classifier owning the annex

(5) For Subset Contract Viewpoint scripts declared in a package and enforced in other packages, a theorem invocation without a root classifier set parameter will result in executing the theorem for all classifiers matching the categories specified in the apply_to_clause, declared in packages that enforce the Subset Contract.

(6) If the evaluation of the root_expression results in an empty set, the theorem is not executed.

(7) A theorem can declare local variables, assign them and use them in parameterized expressions or as actual parameters to classifier local functions or globally declared functions.

(8) Three kind of executable statements can be used in Theorems: assignments to local variables, iterations and check expression statements.

Syntax

structural_constraint_script ::=

 { theorem_declaration }+ {[check_label] check_statement}+
theorem_declaration ::=

 theorem theorem_id locals_declarations theorem_statements end theorem_id;
check_statement ::=

 check_theorem | check_expression
check_theorem ::=

 check theorem theorem_id [(root_expression)] ;
check_expression ::=

 check (verification_expression [, fail_message_string]) ;

theorem_statements ::=

 (theorem_statement)+
root_expression ::=

-- the root expression for theorems must

expression

-- evaluate to a (set of) T_Classifier_subtypes

-- or T_Element_reference_subtypes

verification_expression ::=

-- the verification expression must evaluate to

expression_

-- true or false
Semantics

(2) An assignment operator := evaluates the right hand side expression to a value or a set and assign it to the local variable identified in the left hand side. The syntax for local variable declarations and assignment statements is the same as defined above for the statements of procedural functions.
(3) An iteration statement in a theorem is introduced by the keywords foreach or while and has exactly the same syntax as the iteration statement defined above in procedural functions.
(4) A check expression statement would evaluate its first parameter Boolean expression; if true, it will continue to the next statement, otherwise it will stop execution unless its second parameter is defined. If the second string parameter fail_message_string is present, then the string will be printed when the first Boolean expression parameter evaluates to false, and the execution will continue.
Example

-- This example shows the structure of a Constraint Annex library and a Constraint Annex subclause for a System implementation
package ContractViewpoints
public

-- A Constraint Annex library to declare a few contract viewpoints and reusable

-- utility functions

annex Constraints_Annex {**

viewpoint PalsChecks structural contract;

 -- Other contract viewpoints can be declared here

viewpoint OtherViewpoint …;

functions { …

-- two different ways of declaring containment set functions

-- when called without a parameter, Process_Set will assume as default

-- parameter the current classifier

Processor_Set (root : T_Subcomponent) := set of T_Processor from root;
Thread_Set := set of T_Thread from self;
Connection_Set = set of T_Connection from self ;
 Max_Thread_Jitter(Threads : set of T_Thread) returns aadlreal :=

 Max({Property(p, "Clock_Jitter") for p in Processor_Set(self) |

 Cardinal({t in Threads | Is_Bound_To(t, p)}) > 0});

 Connections_Among(Set : set of T_Data)returns set of T_Connection :=

 {c in Connection_Set | Member(Owner(Source(c)), Set) and

 Member(Owner(Destination(c)), Set)};

}

**}

end ContractViewpoints;
package MyPalsSystem

public
with ContractViewpoints;

-- A Constraint Annex library to declare some reusable PALS specific functions that

-- can be reused by Constraint Annex clauses attached to classifiers in this package

annex Constraint_Annex {**

functions {

PALS_Period(t:T_Thread)returns aadlreal :=

 Property(t, "PALS_Properties::PALS_Period");

PALS_Id(t:T_Thread)returns aadlboolean :=

 Property(t, "PALS_Properties::PALS_Id");

PALS_Threads returns set of T_Thread :=

 {t in set of T_Thread from self |

 Property_Exists(t, "PALS_Properties::PALS_Id")};

PALS_Group(t:T_Thread)returns set of T_Thread :=

 {s in PALS_Threads | PALS_Id(t) = PALS_Id(s)};

};
**}
system Pals_System_Example
 -- some features declaration
end Pals_System_Example;

system implementation Pals_System_Example.MyImplementation

-- some subcomponents declarations will be here

-- Constraint Annex subclause for this implementation
 annex Constraint_Annex {**

 structural contract ContractViewpoints::PalsChecks

 {

 theorem PALS_Period_is_Period

 foreach s in PALS_Threads do

{check (Property_Exists(s, "Period") and

 PALS_Period(s) = Property(s, "Period"));

};

end PALS_Period_is_Period;

theorem PALS_Group_shares_PALS_Period

 foreach s in PALS_Threads do

{

 foreach t in PALS_Group(s) do

{

check (PALS_Period(s) = PALS_Period(t));

};

};

end PALS_Group_shares_PALS_Period;

theorem PALS_Causality

 foreach s in PALS_Threads do

{

 PALS_Group := PALS_Group(s);

-- Max_Thread_Jitter declared in the Constraint Annex library of

-- another package

 Clock_Jitter := ContractViewpoints::Max_Thread_Jitter(PALS_Group);

 Min_Latency := Min({Lower(Property(c, "Latency")) for

 c in ContractViewpoints::Connections_Among(PALS_Group)});

 Min_Output_Delay := Min({Property(t, "Output_Delay") for t in

 PALS_Group});

check (if 2 * Clock_Jitter > Min_Latency then

 Min_Output_Delay > 2 * Clock_Jitter - Min_Latency

 else

 true);

 };

end PALS_Causality;
theorem PALS_Period

 foreach s in PALS_Threads do

{

 PALS_Group := PALS_Group(s);

 Clock_Jitter := ContractViewpoints::Max_Thread_Jitter(PALS_Group);

 Max_Latency := Max({Upper(Property(c, "Latency"))

 for c in
ContractViewpoints::Connections_Among(PALS_Group)});

 Deadline := Property(s, "Deadline");

 PALS_Period := PALS_Period(s);

 check (Deadline < PALS_Period - 2 * Clock_Jitter - Max_Latency);

};

end PALS_Period;

PALS_Requirements_Verification:
check theorem PALS_Period_is_Period;

check theorem PALS_Group_shares_PALS_Period ;

check theorem PALS_Causality;

check theorem PALS_Period;
 }; -- end of constraint script for ContractViewpoints::PalsChecks;

 -- constraint scripts for other viewpoints can be inserted here

 -- imperative enforcement statements for various contract viewpoints follow
 enforce structural contract ContractViewpoints::PalsChecks;

 **} -- end of Constraint Annex subclause for this system inplementation
end Pals_System_Example.MyImplementation;
end MyPalsSystem;
Other example ideas
1. A Theorem checking that within a Component Implementation all prototypes of subcomponents have bindings

2. A Theorem checking that in a Component Implementation all references to a Feature Group declaring a prototype rd: feature; are bound to the same binding
Naming Rules

(N2) TBD
Legality Rules

(L2) TBD
Consistency Rules

(C1) TBD

2.4 Behavior Assertions Sublanguage
(1) TBD
Syntax

TBD
Semantics

(5) TBD.
Naming Rules

(N3) TBD
Legality Rules

(L3) TBD
Consistency Rules

(C1) TBD

Examples

-- Next example shows TBD
�Note that for procedural functions must explicitly declare what they return, unlike function expressions

� Supported for compatibility with Lute/Real

__

SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.

Copyright © 2008 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER:
Tel: 877-606-7323 (inside USA and Canada)

Tel: 724-776-4970 (outside USA)

Fax: 724-776-0790

Email: custsvc@sae.org

SAE WEB ADDRESS:
http://www.sae.org

271

