
A Synchronous Annex for the AADL
White-paper submitted to the SAE committee on the AADL standard

Loïc Besnard CNRS,
Thierry Gautier INRIA,
Paul Le Guernic INRIA,
Jean-Pierre Talpin INRIA, mailto:talpin@irisa.fr

Abstract
We propose a synchronous timing annex for the AADL standard. Our approach consists of
building a synchronous model of computation and communication that best fits the semantic
and expressive capability of the AADL and yet requires little to know (syntactic) extension to
it, i.e. to identify a synchronous core of the AADL (which prerequisites a formal definition of
synchrony at hand) and define a formal design methodology to use the AADL in a way that
supports formal analysis, verification and synthesis.

This document first identifies the core AADL concepts from which time events can be de-
scribed. Then, we naturally consider the behavior annex (BA) as the mean to model synchronous
signals and traces through automata. Finally, we consider elements of the constraint annex to
reason about abstractions of these signals and traces by clocks and relations among them.

To support the formal presentation of these elements, we define a model of automata that
comprises a transition system to express explicit transitions and constraints, in the form of a
boolean formula on time, to implicitly constraint its behavior. The implementation of such
an automaton amounts to composing its explicit transition system with that of the controller
synthesised from its specified constraints.

1 Introduction

The goal of this white-paper is to state some foundational principles towards the definition
of a synchronous timing annex for the AADL standard. By putting forward synchrony
and timing, we intend to define time starting from software and hardware events incurring
synchronisations in an architecture. A synchronisation indeed is the fundamental artefact
from which time can be sensed in either software or hardware.

Synchrony relates to that fundamental concept as a model of computations and commu-
nications, applicable to both software or hardware design, which puts emphasis on a domain
of time, abstracted through synchronisation points, in order to break down computations
into zero-time reactions and regard communications as instantaneous.

While abstracting real-time, the synchronous hypothesis offers an algebraic framework in
which both event-driven and time-triggered execution policies can be modelled and bridges
to gap symbolic, system-level, static scheduling (using so-called clock calculi) with real-time,
time-triggered, distributed, and dynamic scheduling (using periodic or affine clock calculi).

1.1 Outline
Our aim is to equip the AADL standard with a framework allowing for synchronous mod-
elling, verification and synthesis of architecture-focused embedded software. After the pre-
sentation of related work in that aim, Section 2, we start a brief outline of the model of
computation and communication (MoCC) under consideration, Section 3, whose formal def-
inition is given in Appendix A.

We start from the identification of core AADL events and the behavior annex AS56-02,
from which time can be sensed, and on which our model will operate, Section 4. Compound

mailto:talpin@irisa.fr

2

(synchronous) events are defined from core thread and ports events and property fields will
be used to annotate core AADL concepts with timing properties. This presentation uses
simple examples to illustrate our ideas.

The present timing annex proposal (TA) aims at exploitiong all existing concepts of the
core, BA, and upcoming CA of the AADL to express a synchronous model of computations
and communications. Its implementation hence reduces mainly to the specification of a
synchronous design methodology for the AADL. Tooling this methodology requires using
a pivot model of computations and communications, namely the framework of constrained
automata, formally defined in Appendix A. Section 5 concludes our presentation, offering
perspectives in that aim.

2 Related Work

Many related works have contributed to the formal specification, analysis and verification of
AADL models and its annexes, hence implicitly or explicitly proposing a formal semantics
of the AADL in the model of computation and communication of the verification framework
considered.

The analysis language REAL [1] allows to define structural properties on AADL models
that are checked inductively visiting the object of a model under verification. [3] presents
an extension of this language called LUTE which further uses PSL (Property Specification
Language) to check behavioral properties of models as well as a contract framework called
AGREE for assume-guarantee reasoning between composed AADL model elements.

The COMPASS project has also proposed a framework for formal verification and vali-
dation of AADL models and its error annex [2]. It puts the emphasis on capturing multiple
aspects of nominal and faulty, timed and hybrid behaviors of models. Formal verification
is supported by the nuSMV tool. Similarly, the FIACRE framework [4] uses executable
specifications and the TINA model checker to check structural and behavioral properties of
AADL models.

RAMSES, on the other hand [5], presents the implementation of the AADL behavior
annex. The behavior annex supports the specification of automata and sequences of actions
to model the behavior of AADL programs and threads. Its implementation OSATE proceeds
by model refinement and can be plugged in with Eclipse-compliant backend tools for analysis
or verification. For instance, the RAMSES tools uses OSATE and Ocarina to generate C
code for OSs complying the ARINC-653 standard.

Synchronous modeling is central in [6], which presents a formal real-time rewriting logic
semantics for a behavioral subset of the AADL. This semantics can be directly executed
in Real-Time Maude and provides a synchronous AADL simulator (as well as LTL model-
checking). It is implemented by the AADL2 MAUDE using OSATE.

Similarly, Yang et al.[7] define a formal semantics for an implicitly synchronous subset of
the AADL, which includes periodic threads and data port communications. Its operational
semantics is formalised as a timed transition system. This framework is used to prove
semantics preservation through model transformations from AADL models to the target
verification formalism of timed abstract state machine (TASM).

Our proposal carries along the same goal and fundamental framework of the related work:
to annex the core AADL with formal semantic frameworks to express executable behaviors
and temporal properties, by taking advantage of model reduction possibilities offered thanks
to a synchronous hypothesis, of close correspondence with the actual semantics of the AADL.

Yet, we endeavour in an effort of structuring and using them together within the frame-

3

work of a more expressive multi-rate or multi-clocked, synchronous, model of computations
and communications: polychrony. Polychrony would allow us to gain abstraction from the
direct specification of executable, synchronous, specification in the AADL, yet offer services
to automate the synthesis of such, locally synchronous, executable specification, together
with global asynchrony, when or where ever needed.

CCSL, the clock constraint specification language of the UML profile MARTE [8], relates
very much to the effort carried out in the present document. CCSL is an annotation frame-
work to making explicit timing annotation to MARTE objects in an effort to disambiguate
its semantic and possible variations. CCSL actually provides a clock calculus of greater ex-
pressivity than polychrony, allowing for the expression of unbounded, asynchronous, causal
properties between clocks (e.g. inf and sup).

While CCSL essentially is isolated as an annex of the MARTE standard for specifying
annotations, our approach is instead to build upon the semantics of the existing behavior
and constraint annexes in order to implement a synchronous design methodology in the
AADL, and specify it within a polychronous MoCC.

2.1 About synchrony and polychrony
The synchronous model of programming is based on a very simple pragmatical and realistic
principle: if the actual duration required to process an atomic action A at time t is δA,
and if the result must be available in a delay ∆A, then one can consider that, instead of
being active during δA units of time and sleeping during (∆A − δA) units, the actor (to
avoid confusion with AADL process we improperly use actor instead of process/thread,...)
is active during 0 unit of time and sleeping during (∆A) units. The key concepts for this
level of the design are partial order of (data) events, and equivalence relation over events
(logical synchronisation). One shall however refrain from further simplifying the synchronous
hypothesis by, e.g., considering delayed communications or computations, strictly periodic
reactions, etc.

Delayed communications can introduce unsuitable variations caused by the influence
of architectural choices on the algorithm. For instance, if a function F is computed by
the composition x = f(a), y = g(x) and b = h(y) then, depending on the mapping of
functions f , g and h in one, two or three threads, one may get either bt = h(g(f(at))) or
bt = h(g(f(at−1))) or bt = h(g(f(at−2))), for t the index of signals a and b.

When designing or verifying the behavior of a specific component, a modular approach
consists in viewing the other components of the architecture as a part of the environment.
This abstraction principle makes the design modular and compositional allowing to consider
the environment as a standard system (or set of systems). The counter-part is that non-
deterministic specifications must be possible, which is in fact compatible with synchronous
approach. Non-determinism is not suitable in an embedded system but it is necessary to its
refinement-based or component-based design, which starts from system abstractions that are
partially defined by the composition of elementary blocks and an abstraction of the system’s
environment.

If logical delay must be specified, e.g., to avoid a causal loop between two communicating
threads, one can simply add a one place FIFO (a pre in Lustre). This FIFO can itself
be considered as a specific actor, like a connector in a coordination language. One first
advantage of this approach is to provide a uniform vision of communication between actors
(including these connectors) in which communication takes 0 time.

More generally, compositional design dictates to start an architecture-focused system
design from the composition of a set of components, each with their own clocks, the total

4

of distinct clocks, e.g. harmonics, being fixed later in the design. Hence the necessity
to initially cope with possible non-determinism and the benefits of a multi-rate model of
computations and communications: a polychronous model, which allows to cope with it and
provide model refinement techniques to reach the goal of a globally deterministic design.

3 A model of constrained automata in Polychrony

To support the formal presentation of the timing annex, we define a model of automata that
comprises transition systems to express explicit reactions together with constraints in the
form of boolean formula over time to represent implicit or expected timing requirements.
The implementation of such an automaton amounts to composing its explicit transition
system with that of the controller synthesised from its specified constraints. It is supported
by the Polychrony toolset and offers an expressive capability similar to those of the Esterel
and Signal synchronous programming languages.

The fundamental difference between synchronous automata and asynchronous automata
is that, in a synchronous automaton, transitions can be triggered by guards defined by a
conjunction of events. Such a conjunction of occurrences of events a and b is writen a∗̂b.

Constrained automata are reactive synchronous automata which manipulate timing events
and are subject to constraints. These constraints formulate safety or temporal requirements.
Would a transition of an automaton possibly violate such constraints during runtime, then
its possible state transition should be inhibited and instead stutter or raise an error. Figure 1
depicts a constrained automaton manipulating two events a and b.

A clock automaton A is a tuple!
S = {S1, S2}, ! !states!
s0 = S1, ! ! !initial state!
� = {(S1,S2), (S2,S1)}, !transition relations!
V = {a,b}, ! ! !events!
T = (S1,S2)� a (S2,S1)� b, !labeled formulas!
C = a^*b, ! ! !constraint !

Control alternation of events a and b

Example – a restrictive automatonExample – a restrictive automaton

A global constraint on event occurrences

T TF F T TF F

a a0 a1a0 a2 a3

b b0 b1 b2 b3

AnotB_change

AnotB_change := not (AnotB_change $ 1 init false)

 a ^= when AnotB_change

 b ^= when not AnotB_change

Figure 1 An alternating automaton controlling its input flow.

The automaton specifies the alternation of two input event streams a and b, depicted
by the trace. Its reactive behavior, depicted by the automaton, keeps track of alternation
between a and b by switching between states s1 and s2. It is yet a partial specification of
possible synchronous transitions over the vocabulary of events {a, b}: it does not specify
the case of simultaneous events a, b in s1 or s2. This is done by superimposing it with the
requirement that a and b should never occur simultaneously. With that constraint in place,
the automaton behaves as a constrained asynchronous one (event interleaving). Finally, the
absence of reflexive transitions specify that b (respectively a) cannot occur alone in state
s1 (respectively s2). A reactive extension of this automaton allows b (respectively a) to
occur in state s1 (respectively s2). But the reflexive transition must be fired only when b

(respectively a) occurs alone.
The combination of a synchronous automaton and of a temporal constraint yields the

hybrid structure of timed automaton depicted Figure 1. It supports an algebraic defini-
tion, presented in Appendix A by relying on the model of computation and communication
(MoCC) of Polychrony in order to define a framework of constrained automata capable
of expressing both the BA and CA of the AADL. Using the Polychrony toolset, we are
currently implementing transformation and synthesis techniques which allow to synthesise
an imperative program (or, equivalently, a complete synchronous automaton) that is able

5

to both satisfy the intended semantics of the automaton, but also enforces the expressed
constraint formula.

In addition, and as we shall see, these constraints can themselves be expressed as au-
tomata abstracted by regular expressions on events (event formula), e.g., (a; b)∗ to mean
"always a followed by b", etc. Our plan is to use the behavioral and constraint annex of the
AADL much in the flavour of the program depicted in Figure 1 to separately specify ex-
plicit reactive behavior using automata (top) and refine these specifications using controller
synthesis to enforce satisfaction of implicit timing constraints and temporal requirements.

1 thread a l t e r n a t e
2 features
3 a , b : in event port ;
4 end a l t e r n a t e ;
5

6 thread implementation a l t e r n a t e
7 annex behav i o r_spe c i f i c a t i on {∗∗
8 states
9 s1 : i n i t i a l complete state ;

10 s2 : complete state ;
11 transitions
12 t1 : s1−[on dispatch a]−>s2 ;
13 t2 : s2−[on dispatch b]−>s1 ;
14 constraints
15 never a and b ;
16 ∗∗} ;
17 end a l t e r n a t e ;

Listing 1 A controlled automaton in the AADL behavioral annex

4 Synchronous specifications in the AADL

All the AADL events that the timing annex needs are present in the behavior annex. There-
fore, our proposal for a synchronous timing annex in the AADL will rest on the behavior
annex AS56-02 as a foundation. It can be defined as an extension of the behavior annex or,
alternatively, as a separate annex or an attached property set that refines or specializes a
given behavior annex with synchronous timing constraints.

Figure 2 gives the principle of our approach, which consists in the definition of syn-
chronous specifications inherited from (untouched) behavioral specification and refined with
synchronous constraints expressed using regular expression over coumpound events, which
we shall explain next.

Behavioral Specification

Synchronous Specification

Synchronous Constraint

Compound Event

EventState Transition

Figure 2 A synchronous annex defined by inheritance of behavioral specifications and constraints

6

Section 4.2 proposes a synchronous extension of behavior annexes in order to incorporate
compound events and actions although, in principle, a synchronous annex could be detached
from behavioral specifications by annexing them into compound declarations.

Section 4.3 extends this presentation to that of constraint annexes, in the aim of repre-
senting abstractions of automata using regular expressions or, conversely, to express (and
possibly enforce by controller synthesis) properties of behavioral annexes using regular ex-
pressions representing requirements using observers or invariants.

We will use the behavior annex, Section 4.1, to define the notions of compound events
(combinations of events) and actions (operations performed during a transition). To avoid
any confusion with the term “event”, used in the AADL core and the behavior annex, we will
use the term compound to denote a compound or generalized dispatch condition provided
by a core AADL specification or a behavior annex.

4.1 The behavior annex as a foundation
The behavior annex defines a transition system (an extended automaton) described by three
sections:

variables declarations;
states declarations;
transitions declarations;

States

The states of a transition system (transition system is written STS for short) can be a
qualified initial state, a qualified complete state, that represents temporary suspension of ex-
ecution and resumption based on external trigger conditions, an unqualified execution state,
that represents intermediate computation state, or a qualified final state. The transitions
that have an intermediate execution state as source state can be interpreted as immediate
transitions.

The STS of a thread or a device (D.2 alinea 2) has one initial state, one or more final
state; it can have complete and execution states. The underlining principle is that all threads
are finite. A synchronous interpretation of STSs raises two questions:

the time consumption of an execution condition that catches a previously raised timeout
(D3 alinea 18)
the transition from an execution state to an execution state that can send value (to a
port, a data, ...) (D3 alinea 20)

The STS of a subprogram has one initial state and one final state; it can have execution
states. The STS of another component has one initial state, one or more complete states and
one final state. As for threads, an embedded system is usually assumed not to terminate.

Transitions

Transitions are made of two parts: a state transition condition and an action. The state
transition conditions fall into two categories (D.2 alinea 4-8)

an execution condition models a behavior on input values from ports, shared data, pa-
rameters, and behavior variable values
a dispatch condition affects the execution of a thread on external triggers. Those include:

subprogram call to the STS of a subprogram

7

the arrival of events and event data on ports of a non periodic thread to the STS
of the thread and the hybrid state automaton defined in the AADL core standard
[AS5506A 5.4.1]
the transmission request on an outgoing port to the STS of a virtual bus or bus
time out

One, several, or all dequeued elements are made available to the current action of the
Behavior_Specification (D.2 alinea 7,9).

4.1.1 Towards synchronous data/event flows
Based on the above analysis, we identify some of the extensions to STSs that would be suited
toward synchronous extensions, annotations, annexes of AADL behavior specifications.

States

In a synchronous annex, threads should be allowed to run forever. Usually, the system
scheduler is such a “thread”; the final state of a thread usually has a final state reached
when the whole CPS (cyber-physical system) is halted, but this very much differs from
the final state of a subprogram. For instance the “Sender Behavior Specification” (D.4,
Figure 2), is better interpreted as the description of a session rather than a sender, thread
or process, which would iterate such sessions.

1 thread implementation sender . v2
2 annex behav i o r_spe c i f i c a t i on {∗∗
3

4 states
5 s t : i n i t i a l complete state ;
6 s f : complete f ina l state ;
7 s1 , s2 : state ;
8

9 transitions
10 st −[on dispatch timeout]−>st {d ! (1) } ;
11 st −[on dispatch a]−>s1 ;
12 s1−[a=1]−>s f ;
13 s1−[a=0]−>st ;
14 s f −[on dispatch timeout]−>st {d ! (0) } ;
15 s f −[on dispatch a]−>s2 ;
16 s2−[a=0]−>st ;
17 s2−[a=1]−>s f ;
18 ∗∗} ;
19 end sender . v2 ;

Listing 2 Sender in the behavioral annex, D.4

Transitions

The AADL property that:“dispatch does not depend on the input value”, very much cor-
responds the causal constraint of synchronous languages like Lustre or Signal in which the
availability of a value along a signal depends on the availability/presence of its clock (e.g.
x̂→ x to mean that the clock of x precedes the signal x).

8

Would the same principle be applied to the AADL (e.g. status of a queue and value, ...),
one could then unambiguously put the dispatch and reading of a port a in the same trigger,
as depicted in the following example (Listing 3, modifying figure 1 D.4).

With this extension, and provided a simple causal analysis to reconstruct a graph of trig-
ger/value or value/value causal relations, the explicit specification of numerous intermediate
transitions can be avoided, as well as some of the guarding conditions.

1 thread implementation sender . v2
2 annex behav i o r_spe c i f i c a t i on {∗∗
3

4 states
5 s t : i n i t i a l complete state ;
6 s f : complete f ina l state ;
7

8 transitions
9 st −[on dispatch timeout]−>st {d ! (1) } ;

10 st −[on dispatch a and a=1]−>s f ;
11 st −[on dispatch a and a=0]−>st ;
12 s f −[on dispatch timeout]−>st {d ! (0) } ;
13 s f −[on dispatch a and a=0]−>st ;
14 s f −[on dispatch a and a=1]−>s f ;
15 ∗∗} ;
16 end sender . v2 ;

Listing 3 Sender with generalized triggering expressions

An alternative specification would here be to declare transitions and the aggregated
events separately, one descrbing the operational behavior, the other the requirements, by
making use of the inheritance principle, Figure 4.

1 thread implementation sender . v2
2 annex t im ing_spe c i f i c a t i on {∗∗
3 annex behav i o r_spe c i f i c a t i on {∗∗
4 states
5 s t : i n i t i a l complete state ;
6 s f : complete f ina l state ;
7

8 transitions
9 st −[on dispatch timeout]−>st {d ! (1) } ;

10 st −[on t r i g g e r 1]−>s f ;
11 st −[on t r i g g e r 0]−>st ;
12 s f −[on dispatch timeout]−>st {d ! (0) } ;
13 s f −[on t r i g g e r 0]−>st ;
14 s f −[on t r i g g e r 1]−>s f ;
15 ∗∗} ;
16

17 constraints
18 t r i g g e r 0 = on dispatch a and a=0
19 t r i g g e r 1 = on dispatch a and a=1
20 ∗∗} ;
21 end sender . v2 ;

Listing 4 An operational sender and refinement constraints

9

A modular decomposition would name the behavioral annex from sender.v2 and inherit
its definition in the constrained variant, Figure 5. Semantically, refinement assumes, in both
cases, the synchronous composition of the specifications sender.v2 and sender.v3.

This, however, requires sender.v3 to get not only access to the sender.v2 interface,
but possibly also to its local states (as we will see later).

1 thread implementation sender . v3 ref ines sender . v2
2 annex t im ing_spe c i f i c a t i on {∗∗
3 constraints
4 t r i g g e r 0 = on dispatch a and a=0
5 t r i g g e r 1 = on dispatch a and a=1
6 ∗∗} ;

Listing 5 Inherited operational behavior and refinement constraints

Compounds

A compound is an aggregated evaluation condition or trigger, as depicted in Listing 6, that
can possibly be declared as a local variable of type event.

A transition can also be labelled by a transition label which is an implicitly declared
and valued event or compound. That compound occurs iff the transition is selected. It can
alternatively be defined by an event that occur in that state on the triggering condition of
the transition.

Finally, the AADL conjunction “and” is extended to triggers and execution condition.
Since the use of priority of the AADL allows to distinguish between “a and b” present and
“a but not b” present, we therefore introduce the“andnot” operator in execution conditions.

As an example, Listing 6 outlines a variant of the sender that ensures deterministic
behavior of the transition system with priority given to port dispatch.

1 thread implementation sender . v2
2 annex behav i o r_spe c i f i c a t i on {∗∗
3

4 states
5 s t : i n i t i a l complete state ;
6 s f : complete f ina l state ;
7

8 transitions
9 st −[on dispatch timeout andnot a]−>st {d ! (1) } ;

10 st −[on dispatch a and a=1]−>s f ;
11 st −[on dispatch a and a=0]−>st ;
12 s f −[on dispatch timeout andnot a]−>st {d ! (0) } ;
13 s f −[on dispatch a and a=0]−>st ;
14 s f −[on dispatch a and a=1]−>s f ;
15 ∗∗} ;
16 end sender . v2 ;

Listing 6 Sender with andnot expressions

A compound constraint subexpression may also be a query on the current state of the
STS, written "in s1”, to mean whether the current STS is in state s1, a state identifier.

10

Figure 7 gives the alternative structure with separate constraints and triggers.

1 thread implementation sender . v2
2 annex t im ing_spe c i f i c a t i on {∗∗
3 annex behav i o r_spe c i f i c a t i on {∗∗
4 states
5 s t : i n i t i a l complete state ;
6 s f : complete f ina l state ;
7 transitions
8 st −[on f t o]−>st {d ! (1) } ;
9 st −[on t r i g g e r 1]−>s f ;

10 st −[on t r i g g e r 0]−>st ;
11 s f −[on f t o]−>st {d ! (0) } ;
12 s f −[on t r i g g e r 0]−>st ;
13 s f −[on t r i g g e r 1]−>s f ;
14 ∗∗} ;
15 constraints
16 f t o = on dispatch timeout andnot a
17 t r i g g e r 0 = on dispatch a and a=0
18 t r i g g e r 1 = on dispatch a and a=1
19 ∗∗} ;
20 end sender . v2 ;

Listing 7 Sender with constraints

Figure 8 gives the modular structuration with separate annexes.

1 thread implementation sender . v2
2 annex behav i o r_spe c i f i c a t i on {∗∗
3 states
4 s t : i n i t i a l complete state ;
5 s f : complete f ina l state ;
6 transitions
7 st −[on f t o]−>st {d ! (1) } ;
8 st −[on t r i g g e r 1]−>s f ;
9 st −[on t r i g g e r 0]−>st ;

10 s f −[on f t o]−>st {d ! (0) } ;
11 s f −[on t r i g g e r 0]−>st ;
12 s f −[on t r i g g e r 1]−>s f ;
13 ∗∗} ;
14 end sender . v2 ;
15

16 thread implementation sender . v2 ref ines sender . v3
17 annex t im ing_spe c i f i c a t i on {∗∗
18 constraints
19 f t o = on dispatch timeout andnot a
20 t r i g g e r 0 = on dispatch a and a=0
21 t r i g g e r 1 = on dispatch a and a=1
22 ∗∗} ;
23 end sender . v3 ;

Listing 8 Sender with refinement

11

Actions

A given condition or action may be shared by several transitions of a thread. Labelling a
transition by a compound allows one to associate an action with it and execute it.

If the transition is labelled by, say, compound L, then the action associated with L can
be written separately (e.g. in a synchronous annex or a timing annex), provided that it is
triggered by the compound L.

As an example, action selection is introduced in Listing 9. One clear advantage is to factor
actions that are common to several conditions. A second advantage is to give the capability
of declaring actions or conditions separately through compounds in a timing annex. One
last is to provide a uniform way to declare actions in an automaton.

1 thread implementation sender . v2
2 annex t im ing_spe c i f i c a t i on {∗∗
3

4 annex behav i o r_spe c i f i c a t i on {∗∗
5 states
6 s t : i n i t i a l complete state ;
7 s f : complete f ina l state ;
8 transitions
9 l 0 : st −[on f t o]−>st ;

10 st −[on t r i g g e r 1]−>s f ;
11 st −[on t r i g g e r 0]−>st ;
12 l 1 : s f −[on f t o]−>st ;
13 s f −[on t r i g g e r 0]−>st ;
14 s f −[on t r i g g e r 1]−>s f ;
15 ∗∗} ;
16

17 constraints
18 f t o = on dispatch timeout andnot a ;
19 t r i g g e r 0 = on dispatch a and a=0;
20 t r i g g e r 1 = on dispatch a and a=1;
21

22 actions
23 on s t t o {d ! (1) } ;
24 on s f t o {d ! (0) } ;
25 ∗∗} ;
26 end sender . v2 ;

Listing 9 Final sender automaton

Note that, in this case, actions can in principle be replaced by constraints. Since d is
an output port, one could instead enforce it to equal 1 on event fto in state st, Figure 10.
Using the principle of controller synthesis, again, one would regard these constraints as the
invariants to fulfil and the actions in Figure 9 as the controller enforcing them.

1 constraints
2 on f t o and in s t = (d=1);
3 on f t o and in s t = (d=0);

Listing 10 Final sender automaton

12

As a result, the modular specification of the sender into the behavioral and timing annex
would be the following, Figure 11.

1 thread implementation sender . v2
2 annex behav i o r_spe c i f i c a t i on {∗∗
3 states
4 s t : i n i t i a l complete state ;
5 s f : complete f ina l state ;
6 transitions
7 l 0 : st −[on f t o]−>st ;
8 st −[on t r i g g e r 1]−>s f ;
9 st −[on t r i g g e r 0]−>st ;

10 l 1 : s f −[on f t o]−>st ;
11 s f −[on t r i g g e r 0]−>st ;
12 s f −[on t r i g g e r 1]−>s f ;
13 ∗∗} ;
14 end sender . v2 ;
15

16 thread implementation sender . v3 ref ines sender . v2
17 annex t im ing_spe c i f i c a t i on {∗∗
18 constraints
19 f t o = on dispatch timeout andnot a ;
20 t r i g g e r 0 = on dispatch a and a=0;
21 t r i g g e r 1 = on dispatch a and a=1;
22 on f t o and in s t = (d=1);
23 on f t o and in s t = (d=0);
24 ∗∗} ;
25 end sender . v3 ;

Listing 11 Final sender automaton

4.2 A synchronous behavior annex

Starting from the analysis of Section 4.1, we propose to describe an STS (transition system,
or extended automaton) using the following three sections:

variables declarations;
states declarations;
transitions declarations;

completed by constraints expressed as regular expressions over coumpound events to express
observers, invariants, or guarded actions.

Variables, States, Transitions

See Section 4.1.1.

Actions

All actions are guarded actions executed following a data/event flow model. When the guard
is omitted, the implicit guard is the “clock” of the automaton. Each action can be made of
sequential code as actions in the transitions of the behavior annex AS5506/2

13

Static Constraints

A constraint is either an always or a never constraint. It is defined over compound expres-
sions. For instance, the constraint “never a AND b” means that a and b should never occur
during the same evaluation step, transition, or instant. Conversally, the constraint “always
a AND ” means that a occurs if and only if b occurs during the same instant.

The constraint section of an STS may contain a set of constraints that should simulta-
neously be satisfied (i.e. a conjunction of constraints).

As an example, consider the “alternate” specification introduced in Listing 1. Its au-
tomaton is defined in Listing 12, using the constraint “never a and b”.

1 thread a l t e r n a t e
2 features
3 a , b : in event port ;
4 c : out event port ;
5 end a l t e r n a t e ;
6

7 thread implementation a l t e r n a t e
8 annex behav i o r_spe c i f i c a t i on {∗∗
9 states

10 s1 : i n i t i a l complete state ;
11 s2 : complete state ;
12 transitions
13 t1 : s1−[on dispatch a]−>s2 ;
14 t2 : s2−[on dispatch b]−>s1 ;
15 actions
16 on t2 { c ! } ;
17 constraints
18 never a and b ;
19 −− i . e . a lways (a andnot b) or (b andnot a)∗
20 −− i . e . regexp ((a andnot b) or (b andnot a))∗
21 ∗∗} ;
22 end a l t e r n a t e ;

Listing 12 A polychronous automaton with constraints

Again, the specification can be split into an annex describing the operational behavior,
Figure 13,

1 thread implementation a l t e r n a t e
2 annex behav i o r_spe c i f i c a t i on {∗∗
3 states
4 s1 : i n i t i a l complete state ;
5 s2 : complete state ;
6 transitions
7 t1 : s1−[on dispatch a]−>s2 ;
8 t2 : s2−[on dispatch b]−>s1 ;
9 ∗∗} ;

10 end a l t e r n a t e ;

Listing 13 A behavior annex with constraints

and constraints that control or restrict operations (transitions), Figure 14.

14

1 thread implementation a l t e r n a t i v e ref ines a l t e r n a t e
2 annex t im ing_spe c i f i c a t i on {∗∗
3 constraints
4 never a and b ;
5 on t2 = on c ;
6 ∗∗} ;
7 end a l t e r n a t i v e ;

Listing 14 A behavior annex with constraints

Notice that “never a and b” is a partial specification (i.e. a non executable property).
It is important, however, to possibly provide for an unexpected behavior, or error, if the
constraint cannot be verified or satisfied (at runtime). But here there are many options:

when an unexpected event occurs, it is placed in a fifo and will be taken into account at
the next activation step of the handler thread (this semantics conforms to a data-flow
synchronous semantic but not that of AADL).
the unexpected event is ignored and lost (this semantics corresponds to broadcast-
synchronous semantics)
an error is implicitly raised
an error is explicit raised and handled in the automaton

4.3 Regular expressions in the synchronous behavior annex
Instead of a transition system, one could alternatively just use a regular expression over
events extended with counting (Section A.3). A behavior annex using a regular expression
(instead of a transition system) would be described in four sections:

variables declarations;
regular expression
guarded actions;
(static or invariant) constraints;

Variables, actions, constraints remain unchanged. Nevertheless, since there is no state sec-
tion in a regular expression, a compound like “in s1” cannot be used. We are interested in
defining a concrete syntax of regular expressions with counting that could be shared with
that of the constraint and requirement annexes of the AADL, should they use regular ex-
pression. A initial proposal is given in Section A.3. Using regular expressions, the alternate
thread would be defined as follows in Listing 15.

1 thread implementation a l t e r n a t e
2 annex t im ing_spe c i f i c a t i on {∗∗
3 constraints
4 forever a ; b −− i . e . (a ; b)∗
5 never a and b ; −− i . e . ((a andnot b) or (b andnot a))∗
6 actions
7 on b { c ! } ; −− i . e . on b = on c
8 ∗∗} ;
9 end a l t e r n a t e ;

Listing 15 A polychronous regular expression with static constraints

15

In addition to its iterated behavior, one could specify its static constraint as a regular
expression as well, Listing 16.

1 thread implementation a l t e r n a t e
2 annex t im ing_spe c i f i c a t i on {∗∗
3 constraints
4 forever (a andnot b) ; (b andnot a)
5 actions
6 on b { c ! } ;
7 ∗∗} ;
8 end a l t e r n a t e ;

Listing 16 A polychronous regular expression with implicit constraints

Moreover, the output dispatch could be made implicit and the output dispatch specified
in the regular expression as well, listing 18.

1 thread a l t e r n a t e
2 features
3 a , b : in event port ;
4 c : out event port ;
5 end a l t e r n a t e ;
6

7 thread implementation a l t e r n a t e
8 annex t im ing_spe c i f i c a t i on {∗∗
9 constraints

10 forever (a andnot b) ; ((b andnot a) and c)
11 ∗∗} ;
12 end a l t e r n a t e ;

Listing 17 A polychronous automaton with constraints

Counting expression may be used to relate events with time units, as implicit events. For
instance, computing (60ms) could be written ms[60] as in the following example extracted
from that of the client in the behavior annex D.8:

1 thread a_c l i ent
2 . . .
3 annex t im ing_spe c i f i c a t i on {∗∗
4 regexp
5 forever dispatch ; pre ; ms [6 0] ; post (x)
6 ∗∗} ;
7 end a_c l i ent ;

Listing 18 A polychronous automaton with constraints

We assume that, if several regular expressions are present in the regexp section of an an-
nex, then the associated semantics should be the synchronous product of those regexp. Sim-
ilarly, if several annexes are present in a component specification, their associated semantics
should be the synchronous product of the declared behaviors. However, more compositions
operators may be considered if necessary.

16

5 Conclusion

We observe that the present timing annex (TA), by exploiting all existing concepts of the core
AADL, behavioral annex, and possibly some of the forthcoming constraint annex, mostly
reduces to the specification of a synchronous, refinement-based, design methodology for the
AADL. It relies on a model of computation and communication (MoCC) of Polychrony,
presented in Appendix 3, presented as a model of constrained automata, currently under
implementation.

The outline of a complete design flow would start from the elicitation of requirement
specifications using implicit constraints expressed as regular expressions, the explicit specifi-
cation of core reactive behaviors using BA, behavioral refinement using, e.g., a clock calculus
or controller synthesis from the specified constraints and, finally, conformance checking be-
tween the specified requirements and behaviors and the synthesised models or programs.

Acknowledgments

We wish to thank Oleg, Peter, Jérôme, Etienne, Franck and Pierre for valuable discussions
at the occasion of our previous meetings and would like to open the present document to
their contributions as well as of other interested participants of the committee in order to
build a structured and homogeneous proposal that seamlessly accommodates with the core
and annexes of the AADL.

17

References
1 “Expressing and enforcing user-defined constraints of AADL models”. Olivier GILLES,

Jerome HUGUES. IEEE ICECCS, 2010.
2 “Formal Verification and Validation of AADL Models”. M.Bozzano, R.Cavada, A. Cimatti,

J.-P. Katoen, V.Y. Nguyen, T. Noll, X. Olive. ERTS, 2010.
3 "Compositional Verification of Architectural Models". Darren Cofer,Andrew Gacek, Steven

Miller, Michael Whalen. Springer NFM, 2012.
4 "Formal verification of AADL models with Fiacre and Tina". B. Berthomieu, J.-P. Bodeveix,

S. Dal Zilio, P. Dissaux, M. Filali, P. Gaufillet, S. Heim, F. Vernadat. ERTS, 2010.
5 “An Implementation of the Behavior Annex in the AADL toolset Osate2”. Gilles Lasnier,

Laurent Pautet, Jerome Hugues, Lutz Wrage. IEEE ICECCS 2011.
6 “Formal Semantics and Analysis of Behavioral AADL Models in Real-Time Maude”. Peter

Csaba, Olveczky, Artur Boronat, Jose Meseguer, and Edgar Pek. LNCS FTDS 2010.
7 "Two formal semantics for a subset of the AADL". Yang, Z., Hu, K., Bodeveix, J.-P., Pi,

L., Ma, D.,Talpin, J.-P. UML&AADL workshop at the IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS’11) . IEEE, 2011.

8 "The clock constraint specification language for building timed causality models". Frédéric
Mallet, Julien DeAntoni, Charles André, Robert de Simone. Innovations in Systems and
Software Engineering, 6(1):99-106. Springer, Mars 2010.

9 "Toward polychronous analysis and validation for timed software architectures in AADL" Y.
Ma, H.Yu,T. Gautier, L. Besnard, P. Le Guernic, , J.-P. Talpin and Maurice Heitz.Design
Analysis and Test in Europe (DATE’13). IEEE, April 2013.

10 "System synthesis from AADL using Polychrony". Y. Ma, H. Yu, T. Gautier, J.-P. Talpin,
L. Besnard and P. Le Guernic. Electronic System Level Synthesis Conference (ESLSYN’11).
IEEE, June 2011.

11 "System-level co-simulation of integrated avionics using polychrony". Yu, H., Ma, Y.,
Glouche, Y., Talpin, J.-P., Besnard, L., Gautier, T., Le Guernic, P., Toom, A., and Laurent,
O. ACM Symposium on Applied Computing (SAC’11). ACM, 2011.

12 "Polychronous controller synthesis from MARTE’s CCSL constraints". Yu, H., Talpin, J.-
P., Besnard, L., Gautier, T., Marchand, H., Le Guernic, P. ACM-IEEE Conference on
Methods and Models for Codesign. IEEE, July 2011.

13 "Formal verification on compiler transformations on polychronous equations". V. C. Ngo,
J.-P. Talpin, T. Gautier, P. Le Guernic, and L. Besnard. International Conference on
Integrated Formal Methods. Springer, June 2012.

14 "Compositional design of isochronous systems" Talpin, J.-P., Ouy, J., Gautier,T., Besnard,
L., Le Guernic, P. In Science of Computer Programming. Elsevier, 2011.

15 "Affine data-flow graphs for the synthesis of hard real-time applications". A. Bouakaz, J.-P.
Talpin, and J. Vitek. Application of Concurrency to System Design. IEEE Press, June
2012.

16 Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Infor. and Comput., 110(2):366-390, May 1994.

17 Conway, J.H. (1971). Regular algebra and finite machines. London: Chapman and Hall.
ISBN 0- 412-10620-5. Zbl 0231.94041. Chap.IV.

18 Arto Salomaa, “Two complete axiom systems for the algebra of regular events,” J. Assoc.
Comput. Mach. 13:1 (January, 1966), 158–169.

19 Regular Expressions with Counting: Weak versus Strong Determinism Wouter Gelade,
Marc Gyssens, and Wim Martens SIAM J. Comput., 41(1), 160–190. (31 pages)

20 IEEE Standard for Property Specification Language (PSL) - 1850-2010. http://
standards.ieee.org/findstds/standard/1850-2010.html

http://standards.ieee.org/findstds/standard/1850-2010.html
http://standards.ieee.org/findstds/standard/1850-2010.html

18

A A framework of constrained automata

A.1 Boolean control algebra
We first consider a countable set of Boolean signal variables of which V denotes a possibly
empty finite subset. S is a non empty finite set of states; states and signal variables are
disjoint sets. In the reminder, the symbol “̂ ” denotes the clock of a variable (e.g. x̂), of a
state, of an operator. The term variable is used for signal variable.

I Definition 1. A Boolean Control Algebra is a Boolean Algebra φ(V, S) = (FV,S , ∗̂, +̂, ¬̂V ,

0̂, 1̂V) that satisfies the Boolean Control Algebra properties defined below, where
+̂, ∗̂ are notations for meet (infimum) and join (supremum) operations
¬̂V is notations for complement
0̂, 1̂V are notations for minimum and maximum
the set of formulas FV,S is the smallest set that satisfies

constants: 0̂, 1̂V ∈ FV,S

atoms: (∀x ∈ V ∪ S)(x̂, [x], [−x] ∈ FV,S)
[x] and [−x] denote the clock of x sampled when x is true, resp. false
expressions: (∀f, g ∈ FV,S)(∗̂fg, +̂fg, ¬̂V f ∈ FV,S)
Parentheses and affix notation are freely used.

Our Boolean control algebra supports the following formal properties.
sampling partition: (∀x ∈ (V ∪ S))((x̂ = [x] +̂ [−x]) ∧ ([x] ∗̂ [−x] = 0̂))
automaton clocking: Σ̂x∈V (x̂) = 1̂V , (∀s ∈ S)(ŝ = 1̂V)
state exclusiveness: (∀s1, s2 ∈ S)([s1]∗̂[s2] = 0̂) ∨ (s1 = s2))

19

A.2 Constrained automata
I Definition 2. A constrained automaton A is a tuple A = (SA, s0,→A, VA, TA,CA) where

SA is the non empty set of states and s0 the initial state
→A⊂ S2

A is the transition relation
VA is the set of signal variables
We denote by FA,S the set of formulas in the Boolean Control Algebra φ(VA, SA)
TA : (→A) → FA,S is the function that assigns a formula to a transition. The formula
is by definition the trigger of the transition. Since when the current state is s [s] is true
and for any other state t[t] is false, we assume that
∀s, s1, s2 ∈ SA, [s] does not occur in TA(s1, s2)
CA is the constraint of A.
It is a formula in FA,S that is (constrained to be) null.

A formula f in FA,S is null in A iff f ∗̂CA = f .
If CA is 0̂, the automaton is said constraint free.
If CA is 1̂VA

all formulas in A are null.
A constrained automaton is defined upto isomorphism.

A clock automaton A is a tuple!
S = {S1, S2}, ! !states!
s0 = S1, ! ! !initial state!
� = {(S1,S2), (S2,S1)}, !transition relations!
V = {a,b}, ! ! !events!
T = (S1,S2)� a (S2,S1)� b, !labeled formulas!
C = a^*b, ! ! !constraint !

Control alternation of events a and b

Example – a restrictive automatonExample – a restrictive automaton

A global constraint on event occurrences

T TF F T TF F

a a0 a1a0 a2 a3

b b0 b1 b2 b3

AnotB_change

AnotB_change := not (AnotB_change $ 1 init false)

 a ^= when AnotB_change

 b ^= when not AnotB_change

Figure 3 As a result of the above definition, the alternating automaton is decomposed into
states S = {s1, s2}, variables V = {a, b}, transitions labelled by T = {(s1, s2) 7→ a, (s2, s1) 7→ b}
and constraint C : (a∗̂b) = 0̂. Its control clock is 1̂ = a+̂b. In state s1, the trigger is T (s1) = a, the
null clock C(s1) = C∗̂1̂ = C so that the automaton can only accept a.

20

Notations

Boolean Control difference: f−̂g is used to denote f ∗̂¬̂V g

1A denotes the supremum 1VA
of an automaton A, for a state s in A, CA(s) = CA∗̂[s].

Labeled transitions are denoted by “h : s1 →A s2” meaning that (s1, s2) ∈→A and
TA(s1, s2) = h

The control clock of an automaton A is 1̂A

In h : s1 →A s2, h is the trigger of (s1, s2) and a trigger of s1
The trigger of a state s, TA(s) is the upper bound of the triggers of s
The null clock of a state s is CA(s).
It is defined as the simplified positive Shannon cofactor (for atom “[s]”) of CA∗̂[s].

occurrences of [s] ([−s]) are replaced by 1̂A(0̂)
if t is not s, occurrences of [t] ([−t]) are replaced by 0̂(1̂A)

The stuttering clock of a state s is τ(s) = 1A−̂(CA(s)+̂TA(s)); when τ(s) is not null,
a silent implicit transition s →A s is fired. We name step in s the labeled transition
τ(s) : s→A s

21

Usual properties

a state s in a constrained automaton A is deterministic if the triggers of its transitions
are mutually exclusive; formally s is deterministic iff
(∀((s, s1), (s, s2)) ∈→A × →A)((s1 = s2) ∨ (TA((s, s1)) ∗̂ TA((s, s2)) is null))
a constrained automaton is deterministic iff all its states are deterministic
a state s in a constrained automaton A is reactive or total if for all input configuration,
represented by a control formula I there exists a trigger h, a state s1 and a transition or
a step h : (s, s1) such that h∗̂I is not null; formally s is reactive iff
τ(s) +̂ (Σ(s,t)∈ →A

(TA((s, t)))) = 1̂A

a constrained automaton is reactive iff all its states are reactive (note that if CA is not
0̂ then A is not reactive)

Discussion

A constraint in an automaton is a specification constraint. For instance x := a+ b specifies
an adder behavior such that for each t signals a, b, x are absent, and when one of them is
present, all of them are present and xt := at + bt: we have the constraint that a, b and
c should be synchronous. In this specification, physical availability, depending on value
arrivals, is distinguished from logical behavior. For an asynchronous implementation (or
a “microcode” description) then a container can handle asynchronous arrivals of a, b and
insure synchronous execution of x := a+ b.

22

A.3 Regular expressions
We define the algebra of regular expressions which will be used to abstract constrained
automata or represent there null formula [16].

I Definition 3. A Kleene algebra is structure (A,+, ., ∗, 0, 1) satisfying, for all a, b, c ∈ A,
(A,+, ., 0, 1) is an idempotent semi-ring

(A,+, 0) is an idempotent commutative monoid
(A, ., 1) is a monoid
a.0 = 0.a = 0
a.(b+ c) = a.b+ a.c

(a+ b).c = a.c+ b.c

Partial order (a ≤ b) iff (a+ b = b)
a+ a = a⇒ a ≤ a
a+ b = b ∧ b+ c = c⇒ a+ c = a+ b+ c = b+ c = c

a+ b = a ∧ a+ b = b⇒ a = b

Star definition with natural partial order
(SK1): 1 + aa∗ ≤ a∗
(SK2): 1 + a ∗ a ≤ a∗
(SK3): b+ ax ≤ x⇒ a ∗ b ≤ x
(SK4): b+ xa ≤ x⇒ ba∗ ≤ x

Monotonicity: ≤ is monotonic with respect to all Kleene operators

A clock automaton A is a tuple!
S = {S1, S2}, ! !states!
s0 = S1, ! ! !initial state!
� = {(S1,S2), (S2,S1)}, !transition relations!
V = {a,b}, ! ! !events!
T = (S1,S2)� a (S2,S1)� b, !labeled formulas!
C = a^*b, ! ! !constraint !

Control alternation of events a and b

Example – a restrictive automatonExample – a restrictive automaton

A global constraint on event occurrences

T TF F T TF F

a a0 a1a0 a2 a3

b b0 b1 b2 b3

AnotB_change

AnotB_change := not (AnotB_change $ 1 init false)

 a ^= when AnotB_change

 b ^= when not AnotB_change

Figure 4 The constraint of the alternating automaton C = (a∗̂b) can equivalently be expressed
as the regular event expression ((a−̂b) + (b−̂a))∗

23

Notations

Our objective is to represent events and event formulas as regular expressions (extended)
with counting. We therefore start with a comparison to the property specification language
PSL [20]. The words S ∈ WA of an automaton A are generated from the following values,
operators and formula

Values h are event formula (in place of {h}) and neither the empty set 0 nor 1 = {ε} have
PSL representation. Both 0 and 1 should remain implicit, as part of the event algebra,
with no explicit syntax.
Operators of concatenation “S1.S2”, or “S1;S2” in PSL; union “S1 + S2”, S1|S2 in PSL;
star “S∗”; positive S+ = S;S∗; option S? = 1 + S; fusion S : T , synchronous product
S|T , interleaving and subsets.
Reduction

0 + S = S + 0 = S, 1;S = S; 1 = S, 0;S = S; 0 = 0, S + S = S

S∗;S∗ = S ∗ ∗ = (1 + S)∗ = (1 + SS∗) = S∗, 0∗ = 1 + 0; 0∗ = 1 + 0 = 1
Counters [19] of the form S[n] are inductively defined by S[0] = 1 and S[m+ 1] = S;S[m]

(SD1) (∀n ≥ m)S[m..n] = S[m]; (1 + S)[n−m]
(SD2) S[..n] = S[0..n] = S[0]; (1 + S)[n] = (1 + S)[n]
(SD3) S[..] = S∗
(SD4) S[m..] = S[m];S[..] = S[m];S∗

A clock automaton A is a tuple!
S = {S1, S2}, ! !states!
s0 = S1, ! ! !initial state!
� = {(S1,S2), (S2,S1)}, !transition relations!
V = {a,b}, ! ! !events!
T = (S1,S2)� a (S2,S1)� b, !labeled formulas!
C = a^*b, ! ! !constraint !

Control alternation of events a and b

Example – a restrictive automatonExample – a restrictive automaton

A global constraint on event occurrences

T TF F T TF F

a a0 a1a0 a2 a3

b b0 b1 b2 b3

AnotB_change

AnotB_change := not (AnotB_change $ 1 init false)

 a ^= when AnotB_change

 b ^= when not AnotB_change

Figure 5 The alternating automaton could itself be alternatively expressed by the composition of
two regular event expression consisting of the negation of the constraint (a∗̂b)∗ and of its transitions
(a.b)∗, which yields ((a−̂b).(b−̂a))∗.

24

A.4 Synchronous product
The global behavior of a component such as a thread can be defined by the composition of
features belonging to this component. The synchronous product |×| is one of these composition
operators that will be used in Synchronous AADL Annex. Given two constrained automata
A = (SA, sA0,→A, VA, TA,CA) and A = (SB , sB0,→B , VB , TB ,CB) their constrained syn-
chronous product A|×|B corresponds to the conjunction of the behaviors specified by each of
them. A|×|B is the constrained automaton AB = (SAB , sAB0,→AB , VAB , TAB ,CAB) where

SAB = SA × SB is the set of states,
sAB0 = (sA0, sB0) is the inital state,
→AB= {((s1, t1), (s2, t2))/((s1, s2), (t1, t2)) ∈ →A × →B},
VAB = VA ∪ VB is the set of variables,
(∀ st = ((s1, t1), (s2, t2)) ∈ →AB) (TAB(st) = TAB((s1, t1))∗̂TAB((s2, t2))),
CAB = CA +̂ CB .

The synchronous product is associative (context-independent), commutative (order-indepen-
dent) and has neutral element 1 = ({s}, s, ∅, ∅, ∅, 0̂). Deterministic automata are idempotent:
A|×|A = A.

25

Normal form outline

Constrained automata have normal forms; a constructive definition is outlined as follow:
1 = ({s}, s, ∅, ∅, ∅, 0̂) is a normal form
if A = (SA, s0,→A, VA, TA,CA) is a normal form then

Adding a signal variable preserves the normal form: for every signal variable x that
is not in VA, the automaton B = (SA, s0,→A, VA ∪ {x}, TA,CA) is a normal form
automaton;
Adding a state reachable from an existing state with a non null trigger preserves the
normal form: given a state s /∈ SA, for every state si ∈ SA, for every control boolean
formula h ∈ FVA,SA

that can be used as a trigger for si (i.e. h∗̂[si] is not null in A),
let

– hi be the normal form formula equal to h∗̂[si],
– SB = (SA ∪ {s}),
– →B= (→A ∪{(si, s)}),
– TB = (TA ∪ {((si, s), hi)}),

the automaton B = (SB , s0,→B , VA, TB ,CA) is a normal form automaton;
Adding a local constraint that do not nullify it to the trigger of a transition preserves
the normal form: for every transition (si, sj) ∈→A, for every control boolean formula
h ∈ FVA,SA

, let
– hi,j be the normal form formula equal to TA((si, sj))∗̂h,
– TB be the labelling function equal to TA everywhere unless TB((si, sj)) = hi,j ,

the automaton B = (SA, s0,→A, VA, TB ,CA) is a normal form automaton iff hi,j is
not null;
Adding a constraint that do not nullify any existing trigger preserves the normal form:
for every control boolean formula h ∈ FVA,SA

, let
– CB be the normal form formula equal to CA+̂h,
– TB be the labelling function that associates to every transition (si, sj) ∈→A the
normal form formula equal to TA((si, sj))−̂h,

the automaton B = (SA, s0,→A, VA, TB ,CB) is a normal form automaton iff none of
the triggers is null in B (formally, ∀(si, sj) ∈→A, TB((si, sj)) is not null in B).

An automaton is a normal form automaton only when it can be built by iterative appli-
cation of the above rules.

Note that a normal form automaton is not necessarily deterministic.

The normal form synchronous product is simply defined with the help of a recursive
process starting at inital state.

	Introduction
	Outline

	Related Work
	About synchrony and polychrony

	A model of constrained automata in Polychrony
	Synchronous specifications in the AADL
	The behavior annex as a foundation
	Towards synchronous data/event flows

	A synchronous behavior annex
	Regular expressions in the synchronous behavior annex

	Conclusion
	A framework of constrained automata
	Boolean control algebra
	Constrained automata
	Regular expressions
	Synchronous product

