
SAE AS5506/TBD - 1 -

AEROSPACE
STANDARD

 AS5506/TBD

Issued 2013-09 Draft

SAE Architecture Analysis and
Design Language (AADL) Annex

Volume TBD:
Annex TBD: Unit Relations Annex

RATIONALE

The purpose of this annex is to provide a way to specify relations between unit types and unit type combinations. These
relations can be used to automate building of conversion functions between proportional unit types.

This Architecture Analysis & Design Language (AADL) standard document was prepared by the SAE AS-2C Architecture
Description Language Subcommittee, Embedded Computing Systems Committee, Aerospace Avionics Systems Division.

SAE AS5506/TBD - 2 -

1. Unit Relations Sublanguage
1. Scope
1. The Unit Relations Sublanguage Annex provides a standard AADL sublanguage extension to define
relations between different Unit Types declared in the core AADL.
2. The core AADL provides a way to define a Unit Type that is a set of measurement unit identifiers with
conversion factors between them.

Length_Unit : type units (mm, cm => mm * 10, m => cm * 100, km => m * 1000);
Time_Unit : type units (sec, min => sec * 60, h => min * 60);

3. There are relations between various Unit Types that cannot be expressed in the core AADL. For
example, one measurement unit can represent a relation between a couple of others.

Speed_Unit : type units (mph, mpsec => mph * 3600,
 kmpsec => mpsec * 1000, kmph => mph * 1000);

4. Also it may happen that two different AADL models developed by two different teams define different
Unit Types to represent the same physical quantity. If these models are used within another AADL model there
is no way to compare properties of that types.
5. The Unit Relations Annex is aimed to provide facilities to handle the both situations.
6. Another aim of Unit Relations Annex is to automate conversion between values of different Unit Types
and multiplicative combinations of Unit Types (additionally to conversions between values in different
measurement units of the same Unit Type defined in the Unit Type declaration).
7. Unit Relations Annex does not support relations between Units with affine dependency between them
(for example, Kelvins and Fahrenheits for Temperature Units) because it is hard to define strict semantics of
multiplicative operations on such Units.
8. It would be useful to support standard systems of measurement units (for example, SI, or CGS) to not
redefine units from these systems manually in model for its using.

2. Overview of Unit Relations Sublanguage Concepts
9. Basic Unit Type is a Unit Type declared in the core AADL.
10. Derived Unit Type is formed by multiplication and division of Basic Unit Types.

-- ‘Length_Unit * Length_Unit / Time_Unit’ is an example of Derived Unit Type

11. A normal form of a Derived Unit Type is an expression with powers, multiplications and divisions, where
each Base Unit Type is met just once.

-- ‘Length_Unit^2 / Time_Unit’ is a Derived Unit Type in a normal form

12. A set of measurement units of a Derived Unit Type is formed by all combinations of measurement units
of the corresponding Basic Unit Types taken in a normal form.

-- Measurement units of ‘Length_Unit^2 / Time_Unit’ consist of
-- Length_Unit[mm]^2/Time_Unit[sec], Length_Unit[cm]^2/Time_Unit[sec],
-- Length_Unit[m]^2/Time_Unit[sec], Length_Unit[km]^2/Time_Unit[sec],
-- Length_Unit[mm]^2/Time_Unit[min], Length_Unit[cm]^2/Time_Unit[min],
-- Length_Unit[m]^2/Time_Unit[min], Length_Unit[km]^2/Time_Unit[min],
-- Length_Unit[mm]^2/Time_Unit[h], Length_Unit[cm]^2/Time_Unit[h],
-- Length_Unit[m]^2/Time_Unit[h], Length_Unit[km]^2/Time_Unit[h].

13. Basic concepts of the Unit Relations Annex sublanguage consist of a unit types equation and a unit
type independence assertion.
14. Unit types equation postulates an equality of a value in one Derived Unit Type with specific
measurement unit to a value in another Derived Unit Type with specific measurement unit.
15. Unit type independence assertion helps to prevent unintended consequences of unit type relation
definitions. The assertion enumerates unit types that are designed to be independent of each other. If an error
in unit type relation makes a subset of the types dependent, the assertions allows to detect it and to warn
users.

SAE AS5506/TBD - 3 -

16. A recommended way to use Unit Relations Annex is to augment each unit type declaration clause that
defines a derived unit type with a Unit Relations Annex subclause that explicitly describes relation of the newly
defined unit type with earlier defined ones.

3. Unit Relations Sublanguage Grammar
17. Unit Relations Annex can be declared either as an annex library or as an annex subclause attached to
a property set.
18. Unit Relations Annex consists of one or more unit type equations and unit type independence
assertions.

Syntax

unit_relations_annex ::=
 { unit_types_assertion | unit_types_equation }+

unit_types_assertion ::=
 assert independence unit_type { , unit_type }+;

unit_types_equation ::=
 unit_expr = unit_expr ;

unit_expr ::= unit_mul_expr

unit_mul_expr ::=
 unit_div_expr { * unit_div_expr }*

unit_div_expr ::=
 unit_pow_expr [/ unit_pow_expr]

unit_pow_expr ::=
 unit_basic_expr [^ unitless_hi]

unit_basic_expr ::=
 unit_value
 | unitless
 | (unit_expr)

unit_value ::=
 unit_type [unit]

-- expressions with unitless value
unitless ::= unitless_sum

unitless_sum ::=
 unitless_mul { SUM_OP unitless_mul }*

unitless_mul ::=
 unitless_power { MUL_OP unitless_power }*

unitless_power ::=
 unitless_hi [^ unitless_hi]

unitless_hi ::=
 basic_unitless_value
 | (unitless)

basic_unitless_value ::=
 signed_aadlreal_or_constant
 | signed_aadlinteger_or_constant

SAE AS5506/TBD - 4 -

MUL_OP ::= * | /
SUM_OP ::= + | -

-- unit types

unit_type ::= unit_unique_property_type_identifier

unit ::= unit_identifier

19. unit_unique_property_type_identifier, unit_identifier,
signed_aadlreal_or_constant and signed_aadlinteger_or_constant are syntactic categories
inherited from the core AADL as is.

Naming Rules

1. unit_unique_property_type_identifier of unit_type must refer to a unit type.
2. unit part of unit_value must refer to a unit identifier defined in the declaration of the unit type
referred by unit_type.
3. unit_type must be resolved by standard scope rules from AADL (unqualified identifier means identifier
from the same package as annex declared, qualification of qualified identifier must be consist with "with"
clauses of the package or property set where annex declared).

Legality Rules

1. No one unit type may be included in the left part of the equation and the right part of the same equation.
2. All unit types included in the same assertion must be different.
3. Units Relation Annex may be placed to package-level only or property set-level only.

Consistency Rules

1. Equations (with respect to unit types declarations) must not allow to infer equivalence of a Unit Type to
unitless value. It means the system of equations must not be enough to infer an equality T [u] = const where T
is a Unit Type, u is a measurement unit of T, const is a unitless value. Inferring from unit types equations is
defined as the same as inferring from system of equations on variables and real numbers and product of
variables and real numbers.
2. Equations (with respect to unit types declarations) must not allow to infer equivalence of two different
unitless values. It means the system of equations must not be enough to infer an equality const1 = const2
where const1 and const2 are unequal unitless values.
3. Equations must not violate unit type independence assertions, i.e. the system of equations must not be
enough to infer an equality (after all possible simplification), where a set of Unit Types collected from both
sides of the equality is a non-empty subset of a set of Unit Types enumerated in the independence assertion.

Semantics

20. An equation means possibility of proportional conversion a value of a Derived Unit Type from the left
part of the equation to a value of a Derived Unit Type from the right part of the equation, and vice versa. For
example, equation Square[kmq] = Length[km] * Length[km] means if we have a value with derived unit types
Length[m] * Length[m] (as a result of intermediate computations, for example) where m is a measurement unit
of unit type Length such as km => m*1000; then we may compute a value of unit type Square in kmq
measurement unit by multiplication (1/1000)2 to value in unit type Length[m] * Length[m], and result value will
be of unit type Square with kmq unit.
21. A system of Unit Relation Annex equations defines an equivalence relation between proportional
Derived Unit Types. Equivalence of two Derived Unit Types means that there is a proportional conversion
function between values of that types. The form of the conversion function is F(u) = C * u, where u - a value of

SAE AS5506/TBD - 5 -

one Derived Unit Type, С - unitless constant. One of possible algorithms to infer a conversion function is
presented in Appendix C.
22. Checking of unit relations consistency is a global operation. I.e., while checking a unit relation we must
concern to all the unit relations and unit type declarations we have in a model. For example, if an AADL model
imports packages from different projects and that packages defines semantically equivalent unit types, Unit
Relations Annex allows to define an equation between the types in the top model. In this case system of
equations of the top model is a union of equations from all imported packages and equations from the model
itself.

Examples

property set SI is

 Length_Unit : type units (mm, cm => mm * 10, m => cm * 100, km => m * 1000);

 Time_Unit : type units (sec, min => sec * 60, h => min * 60);

 Speed_Unit : type units (mph, mpsec => mph * 3600,
 kmpsec => mpsec * 1000, kmph => mph * 1000);
 annex unit_relations {**
 Speed_Unit[mph] = Length_Unit[m] / Time_Unit[h];
 assert independence Length_Unit, Time_Unit;
 **}

end SI;

Examples

property set Project1_Property_Set is

 Length_Unit : type units (mm, cm => mm * 10, m => cm * 100, km => m * 1000);

end Project1_Property_Set;

property set Project2_Property_Set is

 Length_Unit : type units (mm, cm => mm * 10, m => cm * 100, km => m * 1000);

end Project2_Property_Set;

package Project3 is

 with Project1_Property_Set;
 with Project2_Property_Set;

 annex unit_relations {**
 Project1_Property_Set::Length_Unit[m] = Project2_Property_Set::Length_Unit[m];
 **}

end Project3;

SAE AS5506/TBD - 6 -

Appendix A. Suggested algorithm of checking system of equations consistency

1. Say system of Unit Type Equations is normalized if each Unit Type is included in an equation no more
than once, and each unit at unit_value is the least unit of unit_type of this unit_value, and system of
equations doesn’t have equations like T [u] = const, or like T [u] = T [u]. To become system of Unit Type
Equations normalized it is need to replace each T[u’] by C * T[u] if u’ is declared as C * u in declaration
of T, remove equations like T[u] = T[u], simplify each equation (compute value of expressions on
unitless values, move all powers of the same unit to the same part of the equation, simplify products of
the same unit (xp * xq → xp+q), replace x0 by constant 1 for any unit x).

2. Suggesting algorithm of checking consistency is iterative on sequence of equations. The first step of
iteration is choosing equation to be processed as current (at the beginning it is the first equation, at the
next step it is the next equation after equation from previous step). The next step of iteration is
choosing any unit type from the current equation (from left or right part of equation in any degree) and
expressing this unit type throught other unit types from the current equation (by multiplication and
division all parts of equation, and exponentiation to become unit type chosen with degree 1). Say now
the current equation is a kind of T[u] = g(T1[u1], T2[u2], …, Tn[un]), where T, T1, T2, …, Tn are unit types,
and u, u1, u2, …, un are theirs measurement units respectively, and g is a non-constant function (it is
used all arguments essentially). The next step of iteration is replacing all occurrences of T[u] in other
equations by g(T1[u1], T2[u2], …, Tn[un]). The last step of iteration is normalization of the system
processed (without changing an order of equations). The iteration process must be stopped if all
equations already processed by iterations or if the system of equations can’t be normalized due to
inferring an equation like T[u] = const. The last case means the initial system of equations was
inconsistent. The first case means the initial system of equations was consisted.

Appendix B. Suggested algorithm of checking system of equations and independence assertions
consistency

1. This algorithms assumes the system of equations have been normalized by algorithm from appendix A
and consistent. So each equation from the system is a kind of T[u] = g(T1[u1], T2[u2], …, Tn[un]), where
T, T1, T2, …, Tn are unit types, and u, u1, u2, …, un are theirs measurement units respectively, and g is a
non-constant function (it is used all arguments essentially), and T[u] occur only in one equation (T1[u1],
T2[u2], …, Tn[un] may occur several times in equations but only in the right part of equations). The
system of equations and assertions are consistent if the system is consistent with each assertion. So it
is needed to looping through sequence of assertions and check consistency of normalized system of
equations with each assertion. The algorithm suggested the following process of inferring an equality
like const = F(T1[u1], T2[u2], …, Tn[un]), where const is a constant, F is a non-constant function, T1[u1],
T2[u2], …, Tn[un] are unit types with their measurement units from A. The system of equations is
inconsistent with assertion A iff this equation is inferred.

2. Suggesting algorithm of checking consistency with assertion A is iterative on sequence of equations (it
is like the algorithm from appendix A, so modified steps are highlighted by italic). The first step of
iteration is choosing equation to be processed as current (at the beginning it is the first equation, at the
next step it is the next equation after equation from previous step). The next step of iteration is
choosing any unit type from the current equation (from left or right part of equation in any degree)
which is not included into A and expressing this unit type throught other unit types from the current
equation (by multiplication and division all parts of equation, and exponentiation to become unit type
chosen with degree 1). Say now the current equation is a kind of T[u] = g(T1[u1], T2[u2], …, Tn[un]),
where T, T1, T2, …, Tn are unit types, and u, u1, u2, …, un are theirs measurement units respectively,
and g is a non-constant function (it is used all arguments essentially). The next step of iteration is
replacing all occurrences of T[u] in other equations by g(T1[u1], T2[u2], …, Tn[un]). The last step of
iteration is normalization of the system processed (without changing an order of equations). The
iteration process must be stopped if all equations already processed by iterations or if the system of
equations can’t be normalized due to inferring an equation like T[u] = const or if the system of
equations doesn’t allow to choose the current unit type at the second step of iteration (it is means the
algorithm infers an equality like const = F(T1[u1], T2[u2], …, Tn[un])).

SAE AS5506/TBD - 7 -

3. The algorithm may be optimized by the following way. Say S is a normalized system of equation. Then
each assertion A can be divided into 3 subsets: A ∩ L, A ∩ R, A \ (L R), where L and R are sets of∪
unit types from the left and right parts of S respectively. So to optimize algorithm for A it is safe to
remove from S all equations which unit type from the left part doesn’t included into A ∩ R.

Appendix C. Suggested algorithm of building conversion functions

1. The following algorithm checks existence of conversion function between two Derived Unit Types
T1[u1] and T2[u2] and (in case of existence) builds this function. At the first the system of equations
must be normalized by the algorithm from appendix A. So each equation of the system obtained likes
t[u] = g(t1[u1], t2[u2], …, tn[un]), where t, t1, t2, …, tn are unit types, and u, u1, u2, …, un are theirs
measurement units respectively, and g is a non-constant function (it is used all arguments
essentially), and t[u] occur only in one equation (t1[u1], t2[u2], …, tn[un] may occur several times in
equations but only in the right part of equations). The next step of algorithm is replacing T1[u1] by
T1[u1’] * C1 where u1’ is the least measurement unit of T1 and u1 is defined as u1’ * C1, and replacing
T2[u2] by T2[u2’] * C2 where u2’ is the least measurement unit of T2 and u2 is defined as u2’ * C2. And
finally it is need to replace each basic unit type in the expression (C1 / C2) * (T1[u1’]/T2[u2’]) which
included in the normalized system as the left part of an equation by the right part of this equation and
simplify the expression obtained. If the expression has been simplified to unitless constant (named
as C), than conversion function from T2[u2] to T1[u1] exists and equals to F(x) = C * x where x is a
value of T2[u2]. If expression obtained is non-constant, T2[u2] can’t be converted to T1[u1] by unit
relations.

