

 AEROSPACE
 STANDARD

SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is
entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.

Copyright © 2014 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)
 Tel: 724-776-4970 (outside USA)
 Fax: 724-776-0790
 Email: custsvc@sae.org

SAE WEB ADDRESS: http://www.sae.org

2

 AS5506B/SSA

 2014-09-20

1

ARCHITECTURE ANALYSIS & DESIGN LANGUAGE (AADL) V2
SYNCHRONOUS SYSTEMS ANNEX (SSA)

This Architecture Analysis & Design Language (AADL) standard document was
prepared by the SAE AS-2C Architecture Description Language Subcommittee,
Embedded Computing Systems Committee, Aerospace Avionics Systems Division.

SAE AS5506/SSA Page 1 of 21

TABLE OF CONTENTS

SSA.1 – Scope 2
SSA.2 – Overview of the AADL behaviour annex 3
SSA.3 – A synchronous behavioural annex 4
SSA.4 – Constraints as behaviour abstractions 8
SSA.5 – Regular constraints 9
SSA.6 – Processes as abstract threads 14
SSA.7 – Formal semantics of automata 17

SAE AS5506/SSA Page 2 of 21

ANNEX DOCUMENT SSA – SYNCHRONOUS SYSTEMS ANNEX

SSA.1 Scope

(1) The Synchronous Systems Annex (SSA) defines an extension of the behavioural annex (BA) by means of
errata to support synchronous composition. This extension is complemented with

– the specification of an annex sublanguage to formally specify software-timing constraints: an event or
clock calculus,

– and behavioural abstractions, by means of regular expressions over events and data-flow networks.

(2) Just as behavioral annexes are associated with AADL thread elements, behavioural abstractions are associ-
ated with thread abstractions, represented by AADL processes.

(3) The purpose of the SSA is support system design with a development methodology reminiscent of syn-
chronous programming languages (SC-Charts, SyncCharts, CCSL, Signal, SCADE). The aim of such a
methodology is to automate the synthesis of behaviors and program threads from high-level specifications
that formalise user requirements:

– Timing constraints, in the form of assertions and regular expressions
– Flow and connections, in the form of data-flow networks

Automated synthesis not only facilitates design but also guarantees the preservation of formal properties and
requirements specified and verified on abstract architectures.

(4) To support the formal definition of our MoCC, we present a algebra of automata consisting of synchronous
transition systems and logical timing constraints. We consider the behaviour annex (BA) as the mean to im-
plement this model, together with the constraint annex (CA), as a mean to represent abstractions of behaviour
annexes using clock constraints and regular expressions.

Outline

(5) The SSA is build upon existing concepts of the AADL [1], its behaviour annex [2], and its forthcoming con-
straint annex, in order to express a synchronous model of computations and communications.

(6) Its specification reduces to the update of a limited number of concepts in the behavioural annex and provides
a synchronous design methodology for the AADL. Consequently, the structure of the present document reads
as follows.

– Section SSA.2 identifies the core AADL artefacts from which time can be sensed and on which our
model will operate.

– Section SSA.3, defines an update of the AADL behaviour annex to support the proposed synchronous
semantics. Guards are defined as generalised behaviour conditions from events defined by AADL core
threads, ports and property fields.

– Section SSA.4 defines abstraction of behaviour annexes automata in terms of timing constraints.
– Section 105 extends them to regular expressions, in the spirit of the constraint annex, and Section SSA.6

outlines its use within processes seen as abstract threads.
– In appendix, Section SSA.7 summarises the formal semantics that defines the synchronous model of

computation and communication (MoCC) of the SSA.

SAE AS5506/SSA Page 3 of 21

SSA.2 Overview of the AADL behaviour annex

(7) The behavioural annex of the AADL [2] provides the required artefacts to define logically timed synchronous
autamata. Our approach is it as the semantic core of the AADL and define synchronous specifications
inherited from behaviour annex specifications: the SSA rests on the behaviour annex AS5506/2 as a foun-
dation [1], of which it defines an extension, an update, or “erratum”.

(8) In the behaviour annex, the specification of a synchronous transition system (STS) comprises three sections:
variables, states and transitions.

States

(9) The state of an STS can be qualified initial, to represent the default entry point, complete, to represent sus-
pension of execution and resumption based on external trigger conditions, or final, to represent termination.
Otherwise, it is an unqualified execution state, that represents intermediate computation state. The transi-
tions that have an intermediate execution state as source state can be interpreted as immediate transitions.

(10) The STS of a thread or device (D.2 par. 2) has one initial state and one or more final state. It can have
complete and execution states. The underlining principle is that all threads are finite. A synchronous inter-
pretation of STSs raises two questions:

– the time lapse of an execution condition catching a previously raised timeout (D3 par. 18)
– the transition from an execution state to another that can send value to, e.g., a port (D3 par. 20)

(11) The STS of a subprogram has one initial state and one final state; it can have execution states. The STS of
another component has one initial state, one or more complete states and one final state. As for threads, an
embedded system is usually assumed not to terminate.

Transitions

(12) Transitions are made of two parts: a state transition condition and an action. The state transition conditions
fall into two categories (D.2 par. 4-8)

– a dispatch condition affects the execution of a thread on external triggers. Those include:

* subprogram call to the STS of a subprogram

* the arrival of events and event data on ports of a non periodic thread to the STS of the thread and
the hybrid state automaton defined in the AADL core standard [AS5506A 5.4.1]

* the transmission request on an outgoing port to the STS of a virtual bus or bus

* time out
– an execution condition models a behaviour on input values from ports, shared data, parameters, and

behaviour variable values

One, several, or all dequeued elements are made available to the current action of the behaviour Specification
(D.2 par. 7.9).

Example

(13) Listing (14) is an example of behavioural annex embedded in the specification of a thread [2, Section D.4,
p26-27]. It defines an automaton with an initial (session) state st, final (session) state sf and (intermediate)

SAE AS5506/SSA Page 4 of 21

execution states s1 and s2. The automaton is executed every 10ms and awaits dispatch from port a. If no
data is available within the 10ms deadline, a timeout event is dispatched (by the scheduler), causing the
STS to stutter and to signal its current state (or expectation) along port d: 1 in st and 0 in sf. If data is
available along port a, it is dispatched to the thread which steps into an intermediate state: s1 from st, s2
from sf. The thread then finalises a transition to a complete state depending on the value of a: 1 to sf and
0 to st.

(14) Specification of the sender control thread in a communication protocol

thread sender
features

d: out event data port;
a: in event data port;

properties

Dispatch Protocol => Timed;
Period => 10 ms;

and sender ;

thread implementation sender
annex behaviour specification { * *

states

st: initial complete state;
sf: complete final state ;
s1 , s2: state ;

transitions

st�[on dispatch timeout]�>st {d!(1)};
st�[on dispatch a]�>s1;
s1�[a=1]�>sf;
s1�[a=0]�>st;
sf�[on dispatch timeout]�>sf {d!(0)};
sf�[on dispatch a]�>s2;
s2�[a=0]�>st;
s2�[a=1]�>sf;

* *};
end sender ;

SSA.3 A synchronous behavioural annex

(15) The SSA describes an STS using the same three sections as the BA: variables, states and transitions; com-
pleted by constraints expressed as regular expressions to express observers and invariants. The combination
of STS and of temporal constraints, presented Section SSA.4, yields the hybrid structure of time-constrained
automata depicted Listing (91). It supports an algebraic definition [4], outlined Section SSA.7.

States

SAE AS5506/SSA Page 5 of 21

(16) The SSA has no intermediate or execution states, like s1 and s2 in Listing (14). In the SSA, time is measured
from the discrete series of transitions occurring during the execution of an STS. Conversely, the time elapsed
from the departing the source state of a transition, evaluating its guard, executing its actions, and entering its
target state are abstracted to zero: all events and actions occurring within that lapse of time are assumed to
be logically synchronous, as depicted below.

�t=10msz }| {
st -[on dispatch a]-> s1 [a=1]-> sf {...}

t0

. . . sf -...-> st
t1

(17) The SSA has no final state either. In the SSA, threads should be allowed to run forever. Usually, the system
scheduler is such a “thread”; it indeed has a final state, but it is reached when the whole system is halted.
This very much differs from the final state of a subprogram. For instance the “Sender behaviour Specification”
(D.4, Listing (14)), is better interpreted as the description of a session of the actual sender sub-system, which
would indefinitely iterate such sessions.

(18) As a result, in any STS of the SSA, one and only one state must be explicitly qualified as initial and all
states are implicitly qualified as complete.

Transitions

(19) The AADL property that“dispatch does not depend on the input value” corresponds the the kind of causal
constraint found in synchronous languages like Lustre or Signal in which the availability of a value along a
signal depends on the availability/presence of its clock (e.g. bx ! x means that the clock of x precedes the
signal x).

(20) By applying the same principle to the AADL (e.g. status of a queue and value, ...), one can unambiguously
specify the schedules of dispatch and read actions on ports a and timeout, all using the same triggering
transitions, as depicted in Listing (27).

(21) With this extension, and provided a simple causal analysis to reconstruct a graph of causal relations between
triggers and values, the explicit specification of numerous intermediate transitions can be avoided, as well as
some of the guarding conditions.

Guards

(22) The SSA defines the notion of guard as an aggregation of triggers and evaluation conditions, as depicted in
Listing (27). Guard form logical formula constructed using the AADL conjunction and, disjunction or, applied
to triggers and execution conditions. Since the use of priority of the AADL allows to distinguish between
“a and b” present and “a but not b” present, we additionally introduce the andnot combinator applied to
execution conditions.

(23) Notice that the BA [2, p22 and p25] allow the aggregation of dispatch conditions using logical formulas
already, Listing (24). The SSA slightly extends its grammar to uniformly reason about time as the synchroni-
sation of triggers, conditions and actions.

SAE AS5506/SSA Page 6 of 21

Logical dispatch conditions in the BA

(24) dispatch trigger condition ::=
dispatch trigger logical expression

| provides subprogram access identifier
| dispatch relative timeout catch
| stop

dispatch trigger logical expression ::=
dispatch conjunction { or dispatch conjunction }*

dispatch conjunction ::=
dispatch trigger { and dispatch trigger }*

(25) In the SSA, we explicitly write a?(1) for reading the first value available on the queue of a dispatched port a

and for testing it equal to 1 (operationally i.e. a?(v) and v=1)). For a data event port, this can alternatively
be abbreviated as a = 1, as in Listing (14). To avoid cluttering guard expressions, we abbreviate the dispatch
condition on dispatch a on a port a using the @sign as @a.

Example

(26) Listing (27) outlines a variant of the sender that ensures deterministic behaviour of the transition system with
priority given to timeout port dispatch.

(27) Sender with synchronous guard

transitions

st�[on dispatch (timeout andnot a)]�>st {d!(1)};
st�[on dispatch a and a?(1)]�>sf;
st�[on dispatch a and a?(0)]�>st;
sf�[on dispatch (timeout andnot a)]�>sf {d!(0)};
sf�[on dispatch a and a?(0)]�>st;
sf�[on dispatch a and a?(1)]�>sf;

(28) The proposed aggregation supports the principle of associating a complete transition within the logical instant
(e.g. t1) within which timeout, d and not a occur simultaneously.

�t=10msz }| {
sf -[on dispatch (timeout andnot a)]-> sf {d!(0)}

t1

. . . sf -...-> st
t2

Remarks

(29) The specification of Listing (27) disambiguates the possibility that a could be dispatched “at the same (log-
ical) time as” the timeout, or that a could be dispatched even after the occurrence of the timeout, which
Listing (14) does not account for, possibly resulting in a non-deterministic choice between transitions st-[on
dispatch timeout]->st and st-[on dispatch a]->s1.

SAE AS5506/SSA Page 7 of 21

(30) The andnot specification applied to the port a or timeout is operationally equivalent to checking a’s queue
empty with a’count=0. Using the latter may in general result in a non stuttering specifications, which would
have the capability to change state without reacting to an input event.

Syntax

(31) A guard generalises the definition of behavior condition and dispatch trigger condition defined in page
22 and 25 of the behaviour annex (AS5506/2).

(32) Syntax of guards in the SSA

guard ::= [on dispatch] dispatch trigger
| logical value expression
| guard (and | or) guard
| guard andnot dispatch trigger

Restrictions

(33) A number of restrictions on the discriminated usage of guards and actions applies to the SSA.

(34) Restrictions on guards

1. Guards are only permitted to freeze ports upon dispatch, and to read and test values from frozen port
ranges.

2. The dispatch action of a guard consumes an amount of values specified by the dispatch action. By
default, on dispatch a freezes the first value in a queue, i.e. a[1], on dispatch a* means that all the
queue is frozen, and a[m,n] means that the mth to nth values are frozen.

3. Guards may not manipulate the queue of a port by, e.g., checking it empty (a’count=0, absence of
event) or not (a’count>0, presence of an event) but instead rely on the logical abstraction offered by
the andnot combinator.

4. The use of the combinators and, or and andnot o not synchronise their trigger and logical subex-
pressions in guard expressions. For example, s0 -[a and b] -> s1 does not force the events a

and b to occur simultaneously. It is an observer of their simultaneous occurrence relative to the parent
observer: the dispatched automaton. However, the behaviour action c := a and b requires a and b

to be synchronised to c with respect to the parent observer.

(35) Restrictions on behaviour actions

1. Behaviour actions behavior action are only permitted to read frozen port values, to perform computa-
tions, and to emit values.

2. By default, an output port may only be used (sent to) once during the behaviour action of a given STS
transition. One may however specify and implement how many values are being sent at all times (burst
mode) just as for reading port queues.

3. Iterations in behaviour actions behavior action should be allowed (oversampling) by defining a local
(scoped) clock domain.

4. A behaviour action cannot perform a dispatch and therefore consume values.

SAE AS5506/SSA Page 8 of 21

SSA.4 Constraints as behaviour abstractions

(36) To render the refinement-based design methodology underlying the design of the AADL, the SSA associates
synchronous behavioural annexes with the definition of logically timed constraints to abstract them.

– The purpose of a (synchronous) behavioural annex (of a thread) is to specify the operational function
of a system, component, process in an AADL specification.

– The purpose of a constraint section (of a process or component) is to specify an abstraction of this
behaviour with respect to its timing and temporal properties.

(37) Guard in behavioural annexes belong to the operational processing of port queues performed in behaviour
annexes. Dispatching, reading, writing, querying a port queue or handling a timeout cannot be performed by
a constraint. These operations must be abstracted with respect to the logical and temporal conditions they
imply.

– As a result, a constraint should refer to a connection or port identifier a as the abstraction of a port
queue, possibly indistinctive of its direction, input or output.

– Similarly, a constraint should refer to an equation a = v as the specification of the current, reception or
emission of a value of a port or variable a.

– Conversely, it should refer as andnot a for the absence of value along a.

Examples

(38) Listing (39) depicts an abstract specification of the sender protocol. It only checks the relative presence
of a and d. This means that the sender must always have a present (it doesn’t say if it’s read or written)
or, exclusively, d present and a absent. Yet, the automaton doesn’t say if d can or cannot be read (by an
automaton composed with the sender) when a is read. Hence, ”a andnot d” might be over specified.

(39) Most abstract specification of the sender protocol

constraints

(a andnot d) or (d andnot a);

(40) Listing (41) is a tentative refinement of the above abstraction. It uses two specific notations. The equation
a = 0 means that the present value of a is equal to 0. The term pre (a=0) refers to the value of its sub-
expression a = 0 from the very last time it was evaluated. Hence, it means that, if the sender was previously
in a state were a was evaluated to 0 then, either a should now be present or d set to the value 1 if it’s not.

(41) A refinement of the sender constraints

constraints

pre (a=0) and (a or (d=1 andnot a));
pre (a=1) and (a or (d=0 andnot a));

Syntax

SAE AS5506/SSA Page 9 of 21

(42) A constraint, Listing (43), consists of a Boolean expression built from dispatch triggers dispatch trigger
to mean ports with dispatched values and refer to constraint condition andnot dispatch trigger for the
absence thereof. It can be build from conjunction, disjunction, past and future tense of constraints.

(43) Syntax of constraint conditions

constraint ::= guard | pre logical value condition

specification ::= constraints (([always] | never) constraint ;)*

(44) The logical value condition refers to an AADL value expression. The term always constraint means
that constraint should hold at all times (i.e. every time its implementation evaluates it). The constraint never
constraint means that constraint must be false at all times.

Restrictions and consistency rules

(45) Notice that a constraint such as never a and b is a partial specification (i.e. a non-executable property). It
is important, however, to possibly provide for an exception if the constraint is not satisfied at runtime. There
are several ways to implement it

– when an unexpected event occurs, it is placed in a queue and will be taken into account at the next
activation step of the handler thread.
This semantics conforms to a data-flow synchronous semantic but not that of AADL.

– the unexpected event is ignored and lost (this corresponds to a broadcast-synchronous semantic)
– an error is implicitly raised
– an error is explicitly raised and handled in the automaton

(46) In a guard expression of a constraint, we abstract on dispatch a to have the same meaning as a i.e. an
occurrence of an event along a concrete port abstracted by a as well as, conversely, a?(0) and a=0 to mean
reading a value along a and testing it to be 0.

SSA.5 Regular constraints

(47) Instead of using past or future tense, or a transition system, one may use a regular expression on constraint
conditions to specify temporal properties. The use of regular expressions to specify behaviour abstraction is
very common in system design with the IEEE standard PSL [6].

Example

(48) Listing (49) is a refinement of the sender’s constraints using regular expressions. From a equal to 0, the
sender should either accept a, or d equal to 1 when a is absent.

(49) Sender abstraction using regular expressions

constraints

{a=0; a or (d=1 andnot a)};
{a=1; a or (d=0 andnot a)};

SAE AS5506/SSA Page 10 of 21

Counting

(50) Just as in PSL, counting expressions in SSA constraints relate events with time units and periodic behaviours.
Its principle can be applied to the sender protocol specification by, e.g., considering its timeout of 10ms.
While one may or may not want to specify the thread’s timeout signal directly, it is still possible to specify the
minimum amount of time before port d is triggered as a result of the timeout dispatch, Listing (51).

(51) Timed abstraction of the sender protocol

constraints

(a andnot d every ms [0..10[) or (d andnot a every ms [10..[)

(52) In Listing (51), the terms a and d denote port events, the periods or instants at which they are dispatched or
checked empty. The constraint means that it is always the case that either a occurs and not d within 10ms

and that, every 10ms after dispatch, d occurs as a result of the timeout, when a is absent. The keyword
every explicitly times the port d by associating it with a period of time.

(53) A possible refinement of this specification is defined in Listing (54), decomposes in two parts. One part
consists of the logical transitions from a equal to 0 or 1 to either another a or d (equal to 1 or 0). The second
part is the trigger of d, or the conditions for accepting d. Namely, it is that 10 milliseconds have elapsed
(relative to the context in which the constraint is checked) and (then) no a is present.

(54) Real-time abstraction of the sender protocol

constraints

{a=0; a xor d=1};
{a=1; a xor d=0};
d every ms [10]

(55) Notice that the time unit ms cannot be regarded as a logical event, as its meaning is not a port. Conse-
quently, it shouldn’t trigger transition either by, e.g., being made explicit in a guard expression. However, it
is mandatory to introduce the every keyword to explicitly time a given event, whose occurrence may itself
trigger a transition.

Syntax

(56) The syntax of regular expression is listed in Listing (57). It corresponds to a Kleene algebra on guards, in
the spirit of the PSL specification language. We note regexp? for option, regexp[n] for counting, regexp
; regexp for concatenation or sequence, regexp + regexp for sum or choice, and regexp* for star or loop.
The keyword always is equivalent to the star.

(57) Syntax of regular expressions

regexp ::= guard
| { regexp ; regexp }

SAE AS5506/SSA Page 11 of 21

| regexp + regexp
| regexp *
| regexp ?
| regexp [n]
| regexp : regexp
| regexp | | regexp

(58) By extension, we revise the syntax of constraints in Listing (43) to allow for a general logical and timed
synchronisations between ports and regular expressions on port events, Listing (59). Unit keywords account
for time units. A time expression consists of a time unit, period and phase. A regular constraint is regular
expression regexp possibly synchronised to a guard (to trigger it by or to synchronize it to an event) or to a
linear time specification.

(59) Updated syntax of guards

unit ::= h | m | Â�s | ms | ps

time ::= unit[integer]+ integer

regular constraint ::= regexp [every (guard | time)]

specification ::= constraints (regular constraint ;)*

Restrictions

(60) Semi-column ; denotes the progression of time between the two consecutive transitions of its sub-expressions.

(61) Time units h, m, s, ms, ps are not ports. They cannot not trigger transitions or be used in guard expres-
sions.

(62) If several regular expressions are present in the constraint section of an annex, then the associated semantics
should be the synchronous product of those regular expressions.

(63) Similarly, if several annexes are present in a component specification, their associated semantics should be
the synchronous product of the declared behaviours.

Example

(64) Another example of the behaviour annex in which this may prove so is that of the client protocol page 40 of
AS5506/2, Listing (65). It specifies a thread of period 100ms to perform a computation consuming 60ms.

(65) Client-server protocol (AS5506/2, page 40)

thread a client
features

SAE AS5506/SSA Page 12 of 21

pre : requires subprogram access long computation ;
post : requires subprogram access send result ; properties

Dispatch Protocol => Periodic ;
Period => 200 ms;

annex behavior specification { * *
variables x : result type ;
states s : initial complete final state;
transitions

s �[on dispatch]�> s { pre !; computation (60 ms); post !(x) };

* *};
end a client ;

(66) One can simply abstract it by specifying the phase of post relative to the period of pre as follows.

constraint
pre every ms [200]
post every ms [200]+60

(67) The SSA is expressive enough to express common protocols and features used in system design, such as
phase detection. Here sunrise is set to happen every time light event switches from false to true. Data
event light is calculated every 10ms from sensor_value refreshed every 1ms.

constraint
sunrise every not (pre light) and light;
sunset every (pre light) and not light;
light and sensor value >= threshold ;
sensor value every ms [1];
light every ms [10];

(68) Notice that the sensor and light event can have independent rates. Harmonic (or not) multi-rate systems can
equally be expressed using the SSA, together with their necessary down-sampling/up-sampling adapters. A
good example is the LTTA protocol [7]. The LTTA is composed of three devices, a writer, a bus, and a reader.
Each device is activated by its own, approximately periodic clock, subject to bounded jitter.

Both values are stored in its output bu�er, denoted by y

w. At any time t, the
writer’s output bu�er y

w contains the last value that was written into it:

y

w(t) = (xw(n), bw(n)) , where n = sup{n

� | t

w(n�) < t} (1)

At t

b(n), the bus bus fetches y

w to store in the input bu�er of the reader, denoted
by y

b. Thus, at any time t, the reader input bu�er is defined by:

y

b(t) = y

w(tb(n)) , where n = sup{n

� | t

b(n�) < t} (2)

At t

r(n), the reader loads the input bu�er y

b into the variables x(n) and b(n):

(x(n), b(n)) = y

b(tr(n))

Then, in a similar manner as for an alternating bit protocol, the reader extracts
x(n) i� b(n) has changed.
This is by the sequence m of ticks where b changes:

m(0) = 0 , m(n) = inf{k > m(n � 1) | b(k) �= b(k � 1)}
x

r(k) = x(m(k)) (3)

writer reader

� �

� �

· sustain y

b � ·bus

x

w

t

w

y

w = (xw
, b

w)

x

r = x

t

r

y

r = (x, b)

t

b

Example. We illustrate the protocol by the following picture. Notice the role of
the flag b: if the writer sends the same value along x

w twice, the boolean flag
switch ensures that this value will be read twice on x

r. On the opposite, if the
value is sent once along x

w and read twice along x

r, the boolean flag samples
the excess of reading.

writer

bus

reader

� �

� � �

x

w
x

w

x

r
x

r

b

w

x

w

SAE AS5506/SSA Page 13 of 21

(69) At the nth clock tick t

w(n), the writer generates the value x

w(n) and an alternating flag f

w(n).

process writer
features

xw : in event data port;
cw : in event port;
fw : out event data port;

constraints

fw every xw every cw;
pre fw and not fw;

cw every ms[InRate]
end writer ;

(70) At any time t, the writer’s output buffer contains the last value that was written into it. At time t

b(n), the bus
fetches the value (xw

, f

w) to store it in the input buffer of the reader, denoted by (xb

, f

b).

process bus

features

xw : in event data port;
cw : in event port;
cb : in event port;
xb : out event data port;
fb : out event data port;
fwb : out event data port;

connections

xb �> writer .xw
fb �> writer .fw

constraints

fb every xb every cb;

cb every ms[BusRate]
end bus;

(71) At t

r(n), the reader loads the input buffer (xb

, f

b) into the variable (x(n), b(n)) = (xb

, f

b)(tr(n)).

process reader
features

xb : in event data port;
fb : out event data port;
cr : in event port;
xr : in event data port;
fr : out event data port;

constraints

SAE AS5506/SSA Page 14 of 21

xr every cr;
(xr = xb) every (fb and not (pre fb));

cr every ms[OutRate]
end reader ;

(72) A correct implementation of the LTTA amounts to maintaining the rate ratios of

InRate�BusRate and bInRate/BusRate\verbc � OutRate/BusRate\verb

between the reader, bus, and writer.

SSA.6 Processes as abstract threads

(73) The formal definition of synchronous automata and constraints expressed as regular expressions allow us
to define a refinement-based design methodology from abstract components and processes specifications
with properties and constraints (to explicit requirements) down to their implementations using systems and
threads. We can exemplify this methodology by considering our running example of the sender, Listing (74).
Its abstract specification as a process may consist of anything but concepts linked to its implementation such
as timeouts or ports (hence dispatch). As a result, we can only say that the thread should alternate between
reading a or emitting d when no a is available.

(74) Abstract specification of the Sender

process sender abstraction
features

a: in data port boolean ;
d: out data port boolean ;

constraints

a or (d andnot a);
end sender abstraction ;

(75) Listing (76) defines a possible state-full refinement of the above state-less property of the sender process. It
says that in fact d will send 1 when the last a was 0, and conversely, 0 when 1.

(76) Specification refinement for the Sender

process sender refined abstraction
features

a: in data port boolean ;
d: out data port boolean ;

constraints

{ (a=0); (a or (d=1 andnot a)) };
{ (a=1); (a or (d=0 andnot a)) };

end sender refined abstraction ;

SAE AS5506/SSA Page 15 of 21

(77) The specification says to send d when a is empty once the process (or thread) is executed. Now, if we allow
to predefined (hardware) events, such as ms to tick every milliseconds, then we can define this condition in
a way lot closer to Listing (80).

(78) Specification refinement for the Sender

process sender refinement
features

a: in data port boolean ;
d: out data port boolean ;

constraints

{ (a=0); (a or d=1) };
{ (a=1); (a or d=0) };
d every ms [10]

end sender refinement ;

Inheritance

(79) A necessary complement to the above is to establish a mechanism to check the conformance of a thread
implementation (an automaton) with respect to the constraints specified in its abstraction (thread features,
process). One possible way of doing that is by using some explicit inheritance mechanism, to ”type” an
automaton by its constraints, as in Listing (80).

(80) Explicit refinement relation between the specification and implementation of the sender

thread implementation sender
inherits sender refinement ;

Data-flow components

(81) To allow for unlimited multi-rate system design, the SSA comprises pre-defined process templates for the
multi-clocked sampling and merge operators when and default reminiscent of the Signal data-flow lan-
guage [8].

(82) Process default defines its output z by x every time it is available and by y otherwise. The control port cz
defines the clock or pace of z. It is the union of these of x and y, by definition.

process default
features

x : in event data port;
y : in event data port;
z : out event data port;

constraints

cz every (x or y);

SAE AS5506/SSA Page 16 of 21

z=x every cz and x;
z=y every cz andnot x;

end default ;

(83) Process when samples data from port x when and only when y is available and its value equal to true. Hence
the rate cz, the conjunction of the paces of x and y and of the guard y=true

process when
features

x : in event data port;
y : in event data port;
z : out event data port;

constraints

cz every (x and y and y?(true));
z=x every cz;

end when;

Acknowledgments

(84) This work is partly funded by Toyota InfoTechnology Center (ITC) and by INRIA D2T’s standardisation support
program. It is based on earlier recommendations to the SAE committee on AADL [3] and a formal semantics
published in [4].

REFERENCES

[1] ”SAE Architecture Analysis and Design Language (AADL) Annex Volume 2. Report AS5506/2. SAE
Aerospace, 2011.

[2] ”SAE Architecture Analysis and Design Language (AADL) Annex D: Behavior Model Annex”. Report
AS5506/D. SAE Aerospace, 2011.

[3] ”Logically timed specifications in the AADL : a synchronous model of computation and communication (rec-
ommendations to the SAE committee on AADL)”. L. Besnard, E. Borde, P. Dissaux, T. Gautier, P. Le Guernic,
J.-P. Talpin. INRIA Technical Report n.446, 2014.

[4] ”Timed behavioural modelling and affine scheduling of embedded software architectures in the AADL using
Polychrony”. L. Besnard, A. Bouakaz, T. Gautier, P. Le Guernic, Y. Ma, J.-P. Talpin, H. Yu. In Science of
Computer Programming. Elsevier, 2014.

[5] CCSL: specifying clock constraints with UML/MARTE, OMG, 2008. http://www.omgmarte.org/node/66.

[6] IEEE Standard for Property Specification Language. IEEE, 2005.
http://dx.doi.org/10.1109/IEEESTD.2005.97780.

[7] ”A protocol for loosely time-triggered architectures. Benveniste, A., Caspi, P., Le Guernic, P., Marchand, H.,
Talpin, J.-P., Tripakis, S. Embedded Software Conference. Lectures Notes in Computer Science. Springer
Verlag, October 2002.

http://www.omgmarte.org/node/66
http://dx.doi.org/10.1109/IEEESTD.2005.97780

SAE AS5506/SSA Page 17 of 21

[8] Programming Real-Time Applications with Signal. P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire.
Proceedings of the IEEE, 79(9), September 1991.

APPENDIX

SSA.7 Formal semantics of automata

Control Algebra

(85) Let V a (possibly empty) countable set of signal variables and S a non empty finite set of state variables with
S\V = ;.
A Boolean control algebra �(V, S) is a tuple (F

V,S

,

b⇤,

b+,

b�, b¬V ,

b0,

b1V), where,

– b⇤, b+ are notations for meet (infimum) and join (supremum) operations,
– b0, b1V are notations for minimum and maximum,
– and the set of control Boolean formulas F

V,S

is the smallest set that satisfies:

* constants: b0,

b1V 2 F

V,S

;

* atoms: (8x 2 V [S)(bx, [x], [¬x] 2 F

V,S

);

* unary expression (clock complementary): (8f 2 F

V,S

)(b¬V f 2 F

V,S

);

* binary expressions: (8f, g 2 F

V,S

)(b+fg,

b⇤fg,

b�fg 2 F

V,S

).
Parentheses and infix notations can be used in the formulas.
The formula bx designates the clock of a variable x.

(86) (F
V,S

,

b⇤,

b+, b¬V ,

b0,

b1V) is a Boolean algebra. The following supplementary axioms are also considered

– difference: f

b� g = f

b⇤ b¬V g;
– sampling partition: (8x 2 V [S)((bx = [x] b+ [¬x]) ^ ([x] b⇤ [¬x] = b0)) ([x] and [¬x] respectively

denote the clock of x sampled when x is tt and when x is ff);
– automaton clock: for V non empty,

P
x2V ([x] b+ [¬x]) = b1V , and (8s 2 S)(bs = b1V);

– null clock: b1; = b0;
– state exclusiveness: (8s1, s2 2 S)([s1] b⇤ [s2] = b0) _ (s1 = s2).

Constrained Automata

(87) For an automaton A with V

A

its set of signal variables and S

A

its set of states, we denote by F

A,S

the set of
normal form formulas in the Boolean control algebra �(V

A

, S

A

). A polychronous constrained automaton A is
an epsilon-free automaton defined up to isomorphism (over states) as a tuple A = (S

A

, s0,⇣A

,V

A

, T

A

, C

A

)
where

– S

A

is the non empty finite set of states;
– s0 is the initial state;
– ⇣

A

⇢ S

A

⇥ S

A

is the transition relation;
– V

A

is the, possibly empty, finite set of signal variables;
– T

A

: (⇣
A

) ! F

A,S

is the function that assigns a formula to a transition;
– C

A

is the constraint of A: it is a formula in F

A,S

that is (constrained to be) null (a formula f in F

A,S

is
null in A iff f

b⇤ C

A

= f).

(88) A transition has an associated formula in the Boolean control algebra that represents the trigger of the
transition.

SAE AS5506/SSA Page 18 of 21

(89) If the formula C

A

is b0, then the automaton is constraint-free; if C

A

is b1VA
, all formulas are null.

Example

(90) Listing (91) depicts a constrained automaton manipulating two events a and b. The automaton specifies the
alternation of two input event streams a and b. Its reactive behaviour, depicted by the automaton, keeps
track of alternation between a and b by switching between states s1 and s2. It is yet a partial specification
of possible synchronous transitions over the vocabulary of events {a, b}: it does not specify the case of
simultaneous events a, b in s1 or s2. This is done by superimposing it with the requirement or constraint
that a and b should never occur simultaneously. With that constraint in place, the automaton behaves as a
constrained asynchronous one (event interleaving).

(91) A controlled automaton in the AADL behavioural annex

thread alternate
features

a,b: in event port;
constraints

never a and b;
end alternate ;

thread implementation alternate
annex behaviour specification { * *

states

s1: initial complete state;
s2: complete state ;

transitions

t1: s1�[on dispatch a]�>s2;
t2: s2�[on dispatch b]�>s1;

* *};
end alternate ;

(92) The alternating automaton of Listing (??) is decomposed into states S = {s1, s2}, variables V = {a, b},
transitions labelled by T = {(s1, s2) 7! a, (s2, s1) 7! b} and constraint C : (ab⇤b) = b0. Its control clock is
b1 = a

b+b. In state s1, the trigger is T (s1) = a, the null clock C(s1) = C

b⇤b1 = C so that the automaton can
only accept a. Since a, b are events, [¬a], [¬b] should be null.
A

alternate

= (S
next commute

: {S1, S2}, s0 : S1, ⇣
next commute

: {(S1, S2), (S2, S1)}, V

next commute

:
{a, b}, T

next commute

: (S1, S2) 7! a, (S2, S1) 7! b, C

next commute

: a

b⇤ b

b+ [¬a] b+ [¬b])

Notations

(93) For an automaton A and V

A

its set of variables, 1
A

denotes the supremum b1VA
; and for a state s in A, C

A

(s)
is the normal form of [s] b⇤ C

A

(C
A

(s) represents the null clock of a state s).

(94) There exists at most one labeled transition from a given source s1 to a given target s2; two potential labeled
transitions h1 : s1 ⇣A

s2 and h2 : s1 ⇣A

s2 are represented by (h1 b+ h2) : s1 ⇣A

s2.

SAE AS5506/SSA Page 19 of 21

(95) An automaton with an empty set of transitions is O
V

= ({s}, s, ;, V, ;,

b1V), which blocks all occurrences of
all variables of V .

(96) The automaton with an empty set of variables is I = I; = ({s}, s, ;, ;, ;,

b0); it is equal to O; = ({s}, s, ;, ;, ;,

b1;).

(97) The control clock of an automaton A is 1
A

(=
P

x2VA
(bx)), the supremum of the clocks of its variables.

(98) In h : s1 ⇣
A

s2, h is the trigger of (s1, s2) and a trigger of s1. The trigger of a state s, trigger

A

(s), is the
upper bound of the triggers of s.

(99) The stuttering clock of a state is the clock difference between the control clock of the automaton and the
trigger of the state (plus the null clock of the state): ⌧(s) = 1

A

b� (C
A

(s) b+ trigger

A

(s)).

(100) When the stuttering clock ⌧(s) of a state s is not null, there is a silent implicit transition ⌧(s) : s ⇣
A

s named
step.

Properties

(101) A state t is n-reachable in A iff s0 and t are not null and i/ either n = 0 and t = s0, ii/ or n > 0 and either t

is (n � 1)-reachable in A, or (9s (n � 1)-reachable in A)(9h)(h b⇤ [s] not null)(h : s ⇣
A

t).

(102) A state t is reachable in A iff it is |S
A

|-reachable in A.

(103) A state s is deterministic if the triggers of its transitions are mutually exclusive: formally, s is deterministic iff
(8((s, s1), (s, s2)) 2⇣

A

⇥ ⇣
A

)((s1 = s2) _ (T
A

((s, s1)) b⇤ T

A

((s, s2)) = b0)).

(104) An automaton is deterministic iff all its reachable states are deterministic.

(105) A state s is total (or reactive) iff ⌧(s) b+ (⌃(s,t) 2 ⇣A
(trigger

A

((s, t)))) = 1
A

. An automaton is total (or
reactive) iff all its states are total (we observe that if C

A

is not b0 then A is not reactive).

Regular expressions

(106) A Kleene algebra is structure (A, +, ., ⇤, 0, 1) satisfying, for all a, b, c 2 A,

– (A, +, ., 0, 1) is an idempotent semi-ring

* (A, +, 0) is an idempotent commutative monoid

* (A, ., 1) is a monoid

* a.0 = 0.a = 0

* a.(b + c) = a.b + a.c

* (a + b).c = a.c + b.c

– Partial order (a b) iff (a + b = b)

* a + a = a) a a

* a + b = b ^ b + c = c) a + c = a + b + c = b + c = c

* a + b = a ^ a + b = b) a = b

– Star definition with natural partial order

* (SK1): 1 + aa

⇤ a

⇤

SAE AS5506/SSA Page 20 of 21

* (SK2): 1 + a

⇤
a a

⇤

* (SK3): b + ax x) a

⇤
b x

* (SK4): b + xa x) ba

⇤ x

– Monotonicity: is monotonic with respect to all Kleene operators

Example

(107) The constraint of the alternating automaton C = (ab⇤b) can be expressed as the regular event expression
((ab�b) + (bb�a))⇤

(108) A controlled automaton in the AADL behavioural annex

thread alternate
features

a,b: in event port;
constraints

always (a andnot b) or (b andnot a);
end alternate ;

Notations

(109) Event formulas as regular expressions, extended with counting can be expressed using the property speci-
fication language PSL [6]. The words S 2 W

A

of an automaton A are generated from the following values,
operators and formula

– Values h are event formula (in place of {h}) and neither the empty set 0 nor 1 = {✏} have PSL
representation. Both 0 and 1 should remain implicit, as part of the event algebra, with no explicit
syntax.

– Operators of concatenation S1; S2, union S1 + S2, star S

⇤, positive S+ = S; S⇤, option S? = 1 + S,
fusion S : T , synchronous product S|T , interleaving and subsets.

– Reduction

* 0 + S = S + 0 = S, 1; S = S; 1 = S, 0; S = S; 0 = 0, S + S = S

* S

⇤; S⇤ = S

⇤⇤ = (1 + S)⇤ = (1 + SS

⇤) = S

⇤, 0⇤ = 1 + 0; 0⇤ = 1 + 0 = 1

(110) Regular expressions with counting, of the form S[n], are inductively defined by S[0] = 1 and S[m + 1] =
S; S[m]. They satisfy

– (SD1) (8n � m)S[m..n] = S[m]; (1 + S)[n � m]
– (SD2) S[..n] = S[0..n] = S[0]; (1 + S)[n] = (1 + S)[n]
– (SD3) S[..] = S

⇤

– (SD4) S[m..] = S[m]; S[..] = S[m]; S⇤

Example

(111) The alternating automaton of Listing (??) could itself be alternatively expressed by the composition of two
regular event expression consisting of the negation of the constraint (ab⇤b)⇤ and of its transitions (a; b)⇤,
which yields ((ab�b); (bb�a))⇤.

SAE AS5506/SSA Page 21 of 21

(112) A controlled automaton in the AADL behavioural annex

thread alternate
features

a,b: in event port;

constraints

always {(a andnot b);(b andnot a)}
end alternate ;

end alternate ;

Synchronous product

(113) The global behaviour of a component such as a thread can be defined by the composition of features be-
longing to this component. The synchronous product || is one of these composition operators that will be
used in Synchronous AADL Annex. Given two constrained automata A = (S

A

, s

A0, !A

, V

A

, T

A

,C
A

)
and A = (S

B

, s

B0, !B

, V

B

, T

B

,C
B

) their constrained synchronous product A || B corresponds to the
conjunction of the behaviours specified by each of them. A || B is the constrained automaton AB =
(S

AB

, s

AB0, !AB

, V

AB

, T

AB

,C
AB

) where

– S

AB

= S

A

⇥ S

B

is the set of states,
– s

AB0 = (s
A0, sB0) is the initial state,

– !
AB

= {((s1, t1), (s2, t2))/((s1, s2), (t1, t2)) 2 !
A

⇥ !
B

},
– V

AB

= V

A

[V

B

is the set of variables,
– (8 st = ((s1, t1), (s2, t2)) 2 !

AB

) (T
AB

(st) = T

AB

((s1, t1))b⇤T

AB

((s2, t2))),
– C

AB

= C
A

b+ C
B

.

The synchronous product is associative (context-independent), commutative (order-independent) and has
neutral element 1 = ({s}, s, ;, ;, ;,

b0). Deterministic automata are idempotent.

	Scope
	Overview of the AADL behaviour annex
	A synchronous behavioural annex
	Constraints as behaviour abstractions
	Regular constraints
	Processes as abstract threads
	Formal semantics of automata

