

AEROSPACE
STANDARD

 AS5506A

Issued 2009-12

Superseding AS5506

ARINC 653 annex

RATIONALE

The SAE AS5506A standard is the core language document for version 2 of the Architecture Analysis
and Design Language (AADL). This second revision has special features for defining virtual
processors and virtual buses that provide stronger abstractions for defining layered and partitioned
architectures. ARINC 653 is a common architectural style used in the aviation. The modeling of
ARINC 653 architectures provides opportunities for multiple forms of analysis and for code
generation. This annex defines a common approach to describe ARINC 653 architectures for model
integration, quantitative analysis and as input to ARINC 653 code generators.

This Architecture Analysis & Design Language (AADL) ARINC 653 annex document was prepared by
the SAE AS-2C Architecture Description Language Subcommittee, Embedded Computing Systems
Committee, Aerospace Avionics Systems Division.

MAJOR CHANGES
There is the list of major changes:

• Define common terms
• New properties for specifying module schedule
• New properties for specifying Health-Monitoring concerns
• Reduce annex-specific properties, use more core properties

__
SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is
entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”
SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.
Copyright © 2008 SAE International
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of SAE.
TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)
 Tel: 724-776-4970 (outside USA)
 Fax: 724-776-0790
 Email: custsvc@sae.org
SAE WEB ADDRESS: http://www.sae.org

SAE AS5506A - 2 -

TABLE OF CONTENTS

A.1 Rationale ... 3
A.2 ARINC 653 partition management (ARINC 653 Module) .. 4
A.3 ARINC 653 partitions modeling ... 5
A.4 Multi processors architectures .. 7
A.5 ARINC 653 processes modeling ... 8
A.6 ARINC 653 inter-partition communication modeling.. 10
A.7 ARINC 653 intra-partition communication modeling.. 12
A.8 ARINC 653 buffers modeling .. 12
A.9 ARINC 653 blackboards modeling .. 13
A.10 ARINC 653 events modeling .. 14
A.11 ARINC 653 semaphores modeling ... 15
A.12 ARINC 653 memory requirements modeling .. 15
A.13 ARINC Health Monitor (HM) modeling ... 17
A.14 ARINC 653 modes/states modeling ... 18
A.15 ARINC 653 application-specific Hardware & Device Drivers .. 18
A.16 Summary of modeling rules ... 20
A.17 ARINC 653 Property Set .. 22

APPENDIX B INFORMATIVE SECTION .. 26

B.1 System validation using the ARINC 653 annex ... 26
B.2 Example with one module ... 27
B.3 Example with two modules .. 34

SAE AS5506A - 3 -

ARINC 653 Annex
A.1 Rationale

(1) This annex has been defined to support the modeling, analysis and automated integration of
ARINC 653 and derived or similar partitioned architectures. It provides AADL architectural style
guidelines and AADL defined ARINC 653 oriented properties to define a common approach to
use AADL standardized components to express ARINC 653 architectures. Without the annex
defined framework, modelers would need to define their own AADL ARINC 653 oriented
properties and select their own approach to representing ARINC 653 with AADL components.

(2) This annex was made to help the system designers in the modeling of partitioned architectures,
especially ARINC 653 compliant systems. AADL models can be checked and verified using
various tools. Consequently, the modeling of partitioned architectures will help system designers
to verify and validate their models.This document does not provide any guidance for the
verification of AADL models except to provide a means for common specification.

(3) By providing a common framework for partitioned system expression, distributed development
and common analysis tools are supported. Code generators to auto integrate ARINC 653
systems based on AADL ARINC 653 annex compliant models are supported. The code
generation annex of the AADL provides sufficient information to map most of AADL/ARINC 653
modeling patterns (processes, inter and intra communication channels, shared data) into C or
Ada code. However, configuration of ARINC 653 operating systems is not detailed in the code
generation annex.

(4) The ARINC 653 standard contains several parts, defining required and extended services. This
document provides the mapping between the AADL and the required services of the ARINC 653
standard.

(5) The current document provides a mapping for services defined in the ARINC 653 PART1
standard. Mapping of other services are beyond the scope of this annex.

(6) The avionics-specific terms used in the annex are defined below:

a. Integrated Modular Avionics: A shared set of flexible, reusable, and interoperable
hardware and software resources that, when integrated, form a platform that provides
services, designed and verified to a defined set of safety and performance
requirements, to host applications performing aircraft functions.

b. Module: A component or collection of components that may be accepted by themselves
or in the context of an IMA system. A module may also comprise other modules. A
module may be software, hardware, or a combination of hardware and software, which
provides resources to the IMA system hosted application.

c. Application: Software and/or application-specific hardware with a defined set of
interfaces that when integrated with a platform(s) performs a function.

d. Application software: The part of an application implemented through software. It may
be allocated to one or more partitions.

SAE AS5506A - 4 -

e. Partition: An allocation of resources whose properties are guaranteed and protected by
the platform from adverse interaction or influences from outside the partition.

f. Application-specific hardware: Hardware dedicated to one application.

g. Cabinet: A physical package containing one or more IMA components or modules, that
provides partial protection from environmental effects (shielding) and may enable
installation and removal of those component(s) or module(s) from the aircraft without
physically altering other aircraft ystems or equipment.

h. Core Software: The operating system and support software that manage platform
resources to provide an environment in which an application can execute.

i. Component: A self-contained hardware or software part, database, or combination
thereof that may be configuration controlled.

A.2 ARINC 653 partition management (ARINC 653 Module)

(7) In ARINC 653, partitions are managed by the core software with a dedicated kernel that ensures
time and space isolation. It schedules partitions using a static timeline scheduling algorithm
repeated at a given rate, the major time frame. Each partition has at least one time frame to
execute its tasks (called processes in the ARINC 653 standard).

(8) The ARINC 653 core software and its associated physical processor core are modeled with
AADL using the processor component. This approach is consistent with the AADL concept of
a processor to include the operating evironment. The processor component is used to specifiy
partition management properties which express its requirements.

a. The AADL processor component models the ARINC 653 core software. ARINC 653
modules contain partitions. In AADL, these partitions are modeled with AADL virtual
processor components that are either contained in or bound to an AADL processor
component. These virtual processors subcomponents model partitions runtimes.

b. ARINC 653 module time slots are modeled with the ARINC653::Module_Schedule
property attached to an AADL processor component. The property is a list that
defines window schedules. List elements contains the following attributes:

i. Duration: The time slot duration.

ii. Partition: reference to the partition (virtual processor) associated with this
slot.

iii. Periodic_Periodic_Start: specifies if all periodic tasks should start at the
beginning of the partition execution.

c. The ARINC653::Module_Major_Frame property is associated with an AADL
processor component and specifies the major time frame of an ARINC 653 module.

SAE AS5506A - 5 -

d. The Process_Swap_Execution_Time property from the core language specifies the
time needed to switch from one partition to another. The value represents the time
required to clean a partition and activate another (cache flush, memory segments
change).

e. The ARINC653::Module_Version and ARINC653::Module_Identifier
properties aim at adding a version to the module (potentially similar to the one used in
the system configuration) as well as a textual description or other comments.

f. The ARINC 653 health monitoring properties usable at the module level are covered in
the health monitoring section (A.13).

ARINC 653 entity AADL entity Properties

Module Processor

• ARINC653::Module_Major_Frame
• ARINC653::Module_Schedule
• ARINC653::HM_Error_ID_Levels
• ARINC653::HM_Error_ID_Actions
• ARINC653::Module_Version
• ARINC653::Module_Identifier
• Process_Swap_Execution_Time

Figure 1 – Graphic representation

of an ARINC 653 module (without partition runtime)

A.3 ARINC 653 partitions modeling

(9) An ARINC 653 partition conceptually consists of a separated address space and a specific
runtime. This runtime manages resources within the partition and schedules ARINC 653
processes (that correspond to AADL thread components) that are executed in its address
space. An ARINC 653 partition hosts the application software to be executed.

(10) Each ARINC 653 partition is represented by an AADL process component component bound
to a virtual processor and one or several memory components. In AADL, process
components are used to indicate address space protection for threads. The AADL process
component and its association to a memory component model the partition address space. The
AADL virtual processor component models the partition specific runtime environment
provided by the core software.

ARINC653 Module

SAE AS5506A - 6 -

a. The memory requirements of the ARINC 653 partition are specified by adding the
Data_Size and Code_Size properties. They are added to the AADL process
component that models the partition. In addition, process components are bound to
the physical memory using the AADL Actual_Memory_Binding property.

b. The virtual processor component describes the partition-level scheduler and
runtime requirements using AADL properties. Within each AADL virtual
processor component, the property Scheduling_Protocol defines the scheduling
policy used inside each ARINC 653 partition.

c. The Actual_Processor_Binding AADL property associates the components
(virtual processor and process) that represent a partition. Each AADL process
component (that contains the application software components) must be bound to an
AADL virtual processor (that specified the partition runtime provided by the core
software).

d. Partitions space isolation is specified by associating an AADL process component with
one or several AADL memory components with the Actual_Memory_Binding
property.

e. AADL virtual processor components (partition runtime) must be contained in or
bound to AADL processor components (core software). In case one partition (AADL
virtual processor) can be associated with several core modules (AADL
processor), users must associate them using the property
Actual_Processor_Binding.

f. The Activate_Entrypoint_Source_Text property specifies the name of a
subprogram used to initialized the partition.

g. The Development Assurance Level (DAL) of the application software executed within a
partition the ARINC653::DAL on its associated virtual processor component. It
represents the DAL is the application software executed by the partition, not the DAL of
the core software. Thus, all the software components contained in a partition should
have a DAL value greater or equal to the one of the partition.

h. The Thread_Swap_Execution_Time specifies the potential cost of process switching
inside a partition. When partition-level scheduler switches from one process to another,
there is a potential switching time that should be taken in account for analysis. This
property was designed to specify this overhead time so that system designers can
specify scheduler overhead for each partition.

i. The ARINC653::Error_Handling property specifies the ARINC 653 process (AADL
thread component) used to recover error raised at the partition level.

j. The ARINC653::Partition_Id defines an identifier that potentially corresponds to
the one used by the underlying Operating System. The ARINC653::Partition_Name
defines a partition name with a string that potentially uses natural language.

SAE AS5506A - 7 -

k. The ARINC653::System_Partition property indicates if the partition is an ARINC
653 partition. A system partition is allowed to perform some specific operations (such as
processing input/output)

l. The ARINC 653 health monitoring properties usable at the ARINC 653 partition level are
covered in the health monitoring section (A.13).

ARINC 653 entity AADL entities Properties

Partition

Virtual Processor

• Scheduling_Protocol
• Activate_Entrypoint_Source_Text
• ARINC653::DAL
• ARINC653::Partition_Name
• ARINC653::Partition_Identifier
• ARINC653::System_Partition
• ARINC653::Error_Handling
• ARINC653::HM_Error_ID_Actions
• Thread_Swap_Execution_Time

Process
• Data_Size
• Code_Size

Figure 2 - Graphic representation of a partition
and its association to partition runtime

A.4 Multi processors architectures

(11) Multi-processor partitioned systems in ARINC 653 are represented by multiple physical

processors, each with an ARINC 653 module defined to schedule the partitions on that
processor. The AADL system component is a hierarchical component to integrate software and
hardware components. It is used to model the multi-processor system with its partitions.

(12) Each node of the multi-processor is specified within an AADL system component. This top
system component contains AADL processor, virtual processor and process with at
least: one AADL processor (the ARINC module), one AADL virtual processor (the
partition-level scheduler), one AADL process (the partition address space), one AADL memory

Partition
content Partition Runtime

SAE AS5506A - 8 -

component to bind it to, and one AADL thread within the AADL process component (the
ARINC 653 process executed in a partition).

(13) A higher level AADL system component is used to contain multiple system components
reflecting a multiprocessor system.

(14) Communication between ARINC 653 modules is modeled with event data ports and data ports.
Inter-partitions communications through different processors. See sections A.6 for modeling of
inter-partitions communication channels)

A.5 ARINC 653 processes modeling

(15) ARINC 653 processes execute the application software that consists in code in their partition’s
address space. Each ARINC 653 process is associated with a set of requirements: entry point,
stack size, period, priority, time capacity and deadline type. List of relevant properties properties
are listed in the table below.

(16) ARINC 653 processes are mapped to AADL with the AADL thread component.

a. The ARINC 653 base priority concept is mapped to the AADL Priority property from
the standard AADL property set. The meaning of priority is dependent on the scheduling
algorithm used.

SAE AS5506A - 9 -

b. The ARINC 653 stack size concept is mapped in AADL using the Stack_Size property
from the standard property set.

c. The ARINC 653 entrypoint concept is mapped in AADL using the
Initialize_Entrypoint property from the standard property set.

d. The ARINC 653 period concept is mapped in AADL using the Period property from the
standard property set.

e. The ARINC 653 deadline concept is mapped in AADL using the Deadline property
from the standard property set.

f. The ARINC 653 time capacity concept is specified with AADL using the
ARINC653::Time_Capacity property from the AADL standard property set

g. The ARINC 653 deadline type concept (soft or hard) is specified with the AADL
enumeration Deadline_Type associated to an AADL thread. The value can be either
soft or hard.

h. The ARINC 653 health monitoring properties usable at the ARINC 653 process level are
covered in the health monitoring section (A.13).

i. The core AADL property Dispatch_Protocol specifies the type of process (periodic,
aperiodic, sporadic).

ARINC 653 entity AADL entity Properties

Process Thread

• ARINC653::HM_Error_ID_Actions
• Code_Size
• Data_Size
• Heap_Size
• Stack_Size
• Initialize_Entrypoint
• Dispatch_Protocol
• Compute_Execution_Time
• Deadline
• Period
• Priority
• Deadline_Type
• Time_Capacity

SAE AS5506A - 10 -

Figure 3 - Graphic representation of
an ARINC 653 process inside a partition

A.6 ARINC 653 inter-partition communication modeling

(17) In ARINC 653, inter-partition communication represents data exchange across partitions (one
partition sends data to other partitions). The ARINC 653 standard defines two kinds of inter-
partition communication: queuing ports and sampling ports. ARINC 653 queuing ports store and
queue each instance of data so that receivers can read each queued data element. ARINC 653
sampling ports keep the most recent value (latest data instance replaces prior values). Both
ARINC 653 queuing and sampling ports have timing requirements (refresh of data, queuing
policy, etc.).

(18) ARINC 653 inter-partition communications are specified using AADL ports connected between
AADL process components.

(19) Identifiers for ARINC 653 inter-partitions may be defined in AADL in one of two ways:

a. Identifiers of the ARINC 653 sampling and queuing ports are derived from the name of
the AADL features inside the AADL process component.

b. Identifiers are explicitly defined by the system designer using the AADL Source_Name
property. In that case, the Source_Name property is added on AADL data ports or
event data ports.

(20) ARINC 653 sampling ports are specified using AADL data ports inside an AADL process
component, originating at an AADL thread component (ARINC 653 process).

a. The size of ARINC 653 sampling ports (AADL data ports) is deduced from the size
the AADL data component associated with the port. It corresponds to the maximum
message size option of an ARINC 653 sampling port.

b. The refresh period of ARINC 653 sampling ports is specified with the
ARINC653::Sampling_Refresh_Period property. This property is only relevant on
AADL in data port since the refresh period is only used on the receiver side.

(21) The modeling of ARINC 653 queuing ports is made with the declaration of event data ports
in an AADL process component,

SAE AS5506A - 11 -

a. Size of ARINC 653 queuing ports (AADL event data ports) is deduced from the
size of its associated data component and the port’s queue size. The size of the queue
(number of elements that can be stored) is specified with the property Queue_Size. It
corresponds to the size used when the port is created.

b. The timeout of ARINC 653 queuing ports is modeled using the ARINC653::Timeout
property. It is used for sending data (a sender process sending the data may be blocked
until there is enough space to store its message) and receiving (a receiver process may
be blocked until there is some data to read in the queue) data.

c. The modeling of queuing discipline of ARINC 653 queuing ports is achieved with the
ARINC653::Queueing_Discipline property. Supplied values for this property are
FIFO and By_Priority.

(22) In ARINC 653, queuing and sampling ports are connected through a channel. A channel
connects one source port to at least one destination port (section 2.3.5.1 of the ARINC 653
standard). AADL can connect one source port to several destination ports (section 9.2.2 of the
AADL standard). Thus, AADL connections fit with the semantics of ARINC 653 channels. In
consequence, the modeling of ARINC 653 channels is specified by connecting one AADL
[event] data port to at least another AADL data port or event data port.

ARINC 653 entity AADL entity Properties

Queuing ports Connection of event data ports
between process components

• Queue_Size
• ARINC653::Queueing_Discipline
• ARINC653::Timeout
• Source_Name

Sampling ports Connection of data ports
between process components

• ARINC653::Sampling_Refresh_Period
• Source_Name

Figure 4 - Graphic representation of an ARINC 653 queuing port
connected through two partitions

SAE AS5506A - 12 -

Figure 5 - Graphic representation of an ARINC 653 sampling port
connected through two partitions

A.7 ARINC 653 intra-partition communication modeling

(23) In the ARINC 653 standard, processes contained within to the same partition can exchange
data using intra-partition communications. The ARINC 653 standard defines four kinds of intra-
partition communications: buffer, blackboard, event and semaphore.

(24) ARINC 653 intra-partition communication is specified in AADL models using connections and
data accesses between AADL thread components. Communication is considered as intra-
partition communication as long as it is contained within the AADL process and involves only
thread components located in the same process.

(25) ARINC 653 intra-partition channels identifiers may be defined in AADL in one of two ways:

a. The identifier can be deduced from the name of its corresponding AADL entity
(shared data component, [event] data port).

b. System designers can specify the name of the intra-partition channel with the
Source_Name property. This property is added to AADL ports or data and designate
the name of the corresponding ARINC 653 communication channel. By using the the
same value in the Source_Name property on the same AADL resources, system
designers are able to model ARINC 653 communication channels with several readers
and writers.

A.8 ARINC 653 buffers modeling

(26) ARINC 653 buffers provide a mechanism to exchange data across ARINC 653 processes
located in the same partition. Values are put in a queue and the receiver receives each queued
value.

(27) ARINC 653 buffers are modeled in AADL with event data ports in thread components

a. The size of the queue is deduced by the size of the data type and the value of the
Queue_Size property associated with the AADL port.

b. The AADL ARINC653::Queueing_Discipline property indicates what kind of
queuing protocol is used. This property is associated with an AADL event data
port. Supplied values for this property are FIFO and By_Priority.

SAE AS5506A - 13 -

ARINC 653 entity AADL entity Properties

Buffers
Connection of event data ports

between threads components located
in the same process.

• Queue_Size
• ARINC653::Queueing_Discipline
• Source_Name

Figure 6 - Graphic representation of an
ARINC 653 buffer communication channel

A.9 ARINC 653 blackboards modeling

(28) ARINC 653 blackboards enable data sharing across ARINC 653 processes located in the same
ARINC 653 partition. Unlike ARINC 653 buffers, ARINC 653 blackboards do not keep each
instance of the data and only store the most recent received value. System designers can
specify a timeout when an ARINC 653 process reads a data on a blackboard: readers can wait
data until this specified timeout.

(29) ARINC 653 blackboards can be specified with AADL using data ports or shared data
components. The following paragraphs detail both modeling patterns.

(30) ARINC 653 blackboards can be specified with AADL using a shared data component across
several AADL thread components.

a. When a shared data is used to model an ARINC 653 blackboard, the size of the ARINC
653 blackboard is deduced from the size of the shared AADL data component.

b. The AADL ARINC653::Timeout property is associated with an AADL data access
to specify the timeout used to read the ARINC 653 blackboard.

c. Modeling ARINC 653 blackboard usage by an ARINC 653 process is achieved by an
AADL data access feature in an AADL thread component.

(31) ARINC 653 blackboards can also be specified with AADL using data ports. These AADL
data ports are connected between AADL thread components located in the same partition.

a. When using AADL data port to represent ARINC 653 blackboard, the size of the
specified ARINC 653 blackboard is deduced from the size of the data type associated
with the AADL data port.

b. The AADL ARINC653::Timeout property is associated with the data port to model
the timeout used to read a blackboard.

SAE AS5506A - 14 -

c. Modeling ARINC 653 blackboard sharing across several threads is achieved by
connecting data ports between AADL thread components.

ARINC 653 entity AADL entity Properties

Blackboard
• Data component shared between thread

components located in the same process.
• Data ports connected between thread

components located in the same process.

• ARINC653::Timeout
• Source_Name

Figure 7 - Graphic representation of an
ARINC 653 blackboard communication channel

A.10 ARINC 653 events modeling

(32) ARINC 653 events are used to synchronize ARINC 653 processes (AADL thread components)
located in the same ARINC 653 partition (AADL process component). They support control
flow between processes by notifying occurrences of conditions to awaiting ARINC 653
processes.

(33) ARINC 653 events are mapped using AADL event ports between processes.

a. The ARINC653::Timeout property is used on in event ports to model timeout
used by an ARINC 653 process (AADL thread component) when it is waiting for the
event.

ARINC 653 entity AADL entity Properties

Events
Connection of event ports between
thread components located in the same

process.

• ARINC653::Timeout
• Source_Name

Figure 8 - Graphic representation of an
ARINC 653 event communication channel

SAE AS5506A - 15 -

A.11 ARINC 653 semaphores modeling

(34) ARINC 653 semaphores synchronize ARINC 653 processes located in the same partition and
provide controlled access to resources. Unlike ARINC 653 events, ARINC 653 semaphores can
have a queuing discipline that defines queuing mechanisms for waiting processes.

(35) In ARINC 653, semaphores are used to protect resources from concurrent access. In AADL,
resources are modeled using the data component. The use of shared data is achieved using
data access features. The use of a semaphore is modeled using the property
Concurrency_Control_Protocol with the value set to Protected_Access.

a. AADL shared data components that use ARINC 653 semaphores to avoid concurrent
access must be contained in a process component in order to be shared with several
threads. The access to the data is achieved with AADL data access features.

b. The AADL ARINC653::Queueing_Discipline property indicates what kind of
queuing protocol is used to dispatch tasks waiting on the semaphore. This property is
associated with an AADL data access. Supplied values for this property are FIFO
and By_Priority.

ARINC 653 entity AADL entity Properties

Semaphore Data inside process and data
access for each thread that needs it.

• ARINC653::Timeout
• ARINC653::Queueing_Discipline
• Source_Name

Figure 9 - Graphic representation of an ARINC 653 semaphore usage
across two ARINC 653 processes

A.12 ARINC 653 memory requirements modeling

(36) System designers may want to model partitions isolation in different memory segments. To do
that, memory components that represent physical memory contain several memory
subcomponents (add other memory components as subcomponents). In this hierarchy of AADL
memory components, the root memory component models the hardware memory whereas the
AADL memory subcomponents model logical separation of the memory (memory segments
where partitions store code and data).

SAE AS5506A - 16 -

(37) Requirements of memory component that models memory segments are specified with AADL
using the Base_Address property (which correspond to the base address of the segment in
the ARINC 653 architecture) and the Memory_Size property (which correspond to the size of
the word in this memory component).

(38) Each AADL process component (part of the modeling of ARINC 653 partitions) is associated
(bound) with an AADL memory component using the Actual_Memory_Binding property from
the standard property set. It specifies the deployment of ARINC 653 partitions (AADL process
component) on physical memory (AADL memory component).

(39) The ARINC 653 standard uses space isolation across partitions. Consequently, the binding rule
between partitions and memory implies that an AADL memory component is bounded to exactly
one partition (AADL process).

(40) ARINC 653 defines three memory access types: read, write and execute. ARINC 653 memory
accesses and permissions are specified with AADL by associating the Memory_Protocol
property with an AADL memory component.

(41) ARINC 653 requires that memory content is explicitly specified (if a memory contains code, data
or both). This requirement is specified by adding the ARINC653::Memory_Kind property on
an AADL memory component.

ARINC 653 entity AADL entity Properties

Memory
Requirements

Describe memory requirements for
process components and specify
the allocation of partitions (AADL
process component) on hardware

memory (AADL memory component).

• Actual_Memory_Binding
• Memory_Size
• Base_Address
• Memory_Protocol
• ARINC653::Memory_Kind

Figure 10 - Graphic representation of memory segments
inside the main memory and process binding to memory segments

SAE AS5506A - 17 -

A.13 ARINC Health Monitor (HM) modeling

(42) In ARINC 653, errors can be managed at different levels: module level, partition level and
process level. These levels correspond to the following AADL components: processor,
virtual processor and thread. Moreover, this is the responsibility of the system integrator
to indicate which error is handled at each level. The actual ARINC 653 enumerates faults that
can be raised in each level of an ARINC 653 architecture.

(43) The AADL property ARINC653::HM_ID_Levels specifies the list of all potential errors that can
be triggered within an ARINC 653 modules (AADL processor). This list contains information
for these errors using an AADL record type (HM_Error_Level_Type) that specifies

a. the error identifier (using the ErrorIdentifier field)

b. the error description (using the Description field)

c. the containment level of the error (Module_Level, Partition_Level or
Processor_Level – as defined by the Error_Level_Type AADL type.)

d. the ARINC 653 related error code (ErrorCode) specified by an
ARINC653::Supported_Error_Code value.

(44) The AADL property ARINC653::HM_Error_ID_Actions specifies health-monitoring actions
at each level. This property is added on AADL processor (ARINC 653 module level), AADL
virtual processor (ARINC 653 partition) or AADL thread (ARINC 653 process). The
ARINC653::HM_Error_ID_Actions specifies a list that contains informations for error
handling:

a. the error identifier (using the ErrorIdentifier field) related to the action. This value
is a reference to an existing identifier used by the ARINC653::HM_ID_Levels
property

b. the action description (using the Description field) that details the action using
natural language.

c. the undertaken action performed (using the Action field) to recover the error. This can
be a textual description or a reference to the name of the procedure provided by the
underlying ARINC 653 runtime.

(45) The ARINC 653 standard states that list of errors and actions are defined by the operating
system provider. In consequence, users of the ARINC 653 annex can redefine the list of
possible errors in the property set as in the property set values. To do so, users can extend the
list of errors specified by the AADL type ARINC653::Supported_Error_Code.

(46) In addition, system designers may want to model errors detection and recovery mechanisms to
analyze error impact or fault propagation. Modeling of faults or errors and their impact is beyond
the scope of this annex. However, errors and recovery procedures can be specified using the
Error Modeling Annex of the AADL. This annex provides a suitable semantics to model errors
and their propagation in a layered architecture.

SAE AS5506A - 18 -

A.14 ARINC 653 modes/states modeling

(47) The ARINC 653 standard describes four operational modes for partitions (COLD START,
WARM START, NORMAL and IDLE) as well as several states for the system (Module Init,
Module Function, Partition Init, etc.). This list of states might be extended on a user and
implementation basis.

(48) ARINC 653 modes and states could be mapped to AADL modes. To do so, the
State_Information property provides a way to establish a connection between this two
concepts. The State_Information is added to an AADL model and contains

a. An identifier (field Identifier) that references the related ARINC 653 mode identifier

b. A description (field Description) that describes the ARINC 653/AADL mode using
natural language.

A.15 ARINC 653 application-specific Hardware & Device Drivers

(49) In ARINC 653, application-specific hardware is controlled by device drivers that reside in core
software. The device driver can be located either at the kernel or partition level. Therefore, they
can be located within main module functionalities or isolated in a distinct partition that has its
own resources and services. In ARINC 653, such a partition is called system partition, because
it provides dedicated services and functions to communicate with the hardware although it is
contrained by time and space partitioning. Consequently, system designers and operating
system providers can have different implementation strategies to implement device drivers in
ARINC 653 systems.

(50) These implementation strategies impact system functionalities and performances. Our modeling
patterns are designed for the specification of these two different implementation strategies so
that system designers can precisely describe their system and analyze impact of their
implementations strategies.

(51) Application-specific hardware (network interface, sensor, etc.) is specified with the AADL
device hardware component. On the other hand, the device driver (software that controls the
device) is described by adding an AADL abstract implementation component and
associated with the AADL device component using Device_Driver property.

(52) The abstract component associated with the AADL device component contains all the
necessary components to control the application-specific hardware. It is composed by AADL
components (thread, data, etc.) with their properties and requirements (timing, memory, etc.).
Modeling of device drivers internals describe the underlying operating system and thus, allow
system designer to analyze their impact on the overall system (in terms of performance, latency,
etc.)

(53) AADL device components must be associated with an AADL processor (an ARINC 653
module) or an AADL virtual processor (an ARINC 653 partition).

a. If the AADL device component is bound to an AADL processor, it means that the
device driver resides in the ARINC 653 module.

SAE AS5506A - 19 -

b. If the device component is bound to an AADL virtual processor, it means that
the device driver resides in a system partition and uses time and space isolation
mechanisms of the partition. In this case, the partition is considered as a system
partition.

These two binding mechanisms illustrate the different implementation strategies for device
drivers in ARINC 653 systems and thus, ease the analysis of their impact on the overall
architecture.

ARINC 653 entity AADL entity Properties

Device drivers

AADL device component. The associated
device driver is described using the
Device_Driver property of the standard
property set. This device component is
bound to AADL processor or AADL
virtual processor components.

• Device_Driver
• Actual_Processor_Binding

Figure 11 - Graphic representation of device modeling in

ARINC 653 architectures with both different binding strategies

SAE AS5506A - 20 -

A.16 Summary of modeling rules

ARINC 653
entity AADL entity Properties

Module Processor

• ARINC653::Module_Major_Frame
• ARINC653::Module_Schedule
• ARINC653::HM_Error_ID_Levels
• ARINC653::HM_Error_ID_Actions
• ARINC653::Module_Version
• ARINC653::Module_Identifier
• Process_Swap_Execution_Time
• Scheduling_Protocol

Partition

Virtual Processor

• Scheduling_Protocol
• ARINC653::DAL
• ARINC653::Partition_Name
• ARINC653::Partition_Identifier
• ARINC653::System_Partition
• ARINC653::Error_Handling
• ARINC653::HM_Error_ID_Actions
• Activate_Entrypoint_Source_Text
• Thread_Swap_Execution_Time

Process
• Data_Size
• Code_Size

Process Thread

• ARINC653::HM_Error_ID_Actions
• Code_Size
• Data_Size
• Heap_Size
• Stack_Size
• Initialize_Entrypoint
• Compute_Execution_Time
• Deadline
• Period
• Priority
• Proprity_Type
• Time_Capacity
• Dispatch_Protocol

Queuing ports Connection of event data ports
between process components

• Queue_Size
• ARINC653::Queueing_Discipline
• ARINC653::Timeout
• Source_Name

Sampling Connection of data ports • ARINC653::Sampling_Refresh_Period

SAE AS5506A - 21 -

ports between process components • Source_Name

Buffers
Connection of event data ports

between threads components located
in the same process.

• Queue_Size
• ARINC653::Queueing_Discipline
• Source_Name

Blackboards

• Data component shared between
thread components located in the
same process.

• Data ports connected between
thread components located in the
same process.

• ARINC653::Timeout
• Source_Name

Semaphore
Data contained in a process

component and shared between
several thread components.

• ARINC653::Timeout
• Source_Name
• ARINC653::Queueing_Discipline

Events
Connection of event ports between
thread components located in the

same process.

• ARINC653::Timeout
• Source_Name

Memory
Requirements

Describe memory requirements for
ARINC 653 process (AADL thread

components) and specify the
allocation of ARINC653 partitions
(AADL process component) on

hardware
memory (AADL memory component).

• Actual_Memory_Binding
• Memory_Size
• Base_Address
• Memory_Protocol
• ARINC653::Memory_Kind

Device drivers

AADL device component. The
associated device driver is described

using the Device_Driver property of
the standard property set. This device

component is bound to AADL
processor or AADL virtual

processor components.

• Device_Driver
• Actual_Processor_Binding

Mode AADL mode. The mode can then
represent an ARINC 653 mode. • ARINC653::State_Information

SAE AS5506A - 22 -

A.17 ARINC 653 Property Set

property set ARINC653 is

Module_Major_Frame : Time

 applies to (processor);

The Module_Major_Frame property specifies the major frame for the ARINC 653
module (AADL processor component).

Sampling_Refresh_Period : Time

 applies to (data port);

The Sampling_Refresh_Period property indicates data arrival rate for an in data
port. It corresponds to the concept of refresh time of ARINC 653 sampling port.

Supported_Error_Code: type enumeration
 (Module_Config, Module_Init, Module_Scheduling,
 Partition_Scheduling, Partition_Config,
 Partition_Handler, Partition_Init, Deadline_Miss,
 Application_Error, Numeric_Error,
 Illegal_Request, Stack_Overflow,
 Memory_Violation, Hardware_Fault, Power_Fail);

The Supported_Error_Code enumeration corresponds to the possible Error code
that can be raised at the different levels of an ARINC 653 architecture (module, partition,
process). The list of possible values is implementation dependent and can be modified
by the system designer.

Supported_Memory_Kind : type enumeration
 (memory_data, memory_code);

The Supported_Memory_Kind enumeration describes possible content of an AADL
memory component.

Memory_Kind : list of (Supported_Memory_Kind)

 applies to (memory);

The Memory_Kind property describes the content of an AADL memory component.
Timeout : Time

 applies to (event data port,data port,event port,access connection);

The Timeout property specifies the timeout used by an ARINC 653 process when
sending/receiving a data. Depending on which component it is used, it could be useful
for sender or receiver side.

Supported_DAL_Type : type enumeration
 (LEVEL_A, LEVEL_B, LEVEL_C, LEVEL_D, LEVEL_E);

The Supported_DAL_Type enumeration corresponds to the different Development

SAE AS5506A - 23 -

Assurance Levels supported by the ARINC 653 standard.

DAL : Supported_DAL_Type

 applies to (virtual processor, process, thread, subprogram);

The DAL property defines the Development Assurance Level of a component. It is associated to
software component to capture their associated DAL. When applied to a virtual processor, this
is a requirement for this partition and all software components associated by this partition must
have at least the same or higher DAL value.

Module_Version : aadlstring applies to (processor);

The Module_Version property adds a description to the ARINC 653 module (textual
comments using natural language).
Module_Identifier: aadlstring applies to (processor);

The Module_Identifier property specifies the ARINC 653 identifier for a module specifies
with an AADL processor component.
Partition_Name: aadlstring applies to (virtual processor);

The Partition_Name property defines the name for a specific partition with natural language.
Partition_Identifier: aadlinteger applies to (virtual processor);

The Partition_Identifier property defines the identifier of the partition that potentially
corresponds to the one used by the execution platform.
System_Partition: aadlboolean applies to (virtual processor);

The System_Partition property specifies if a given partition is operating as a system
partition (performing I/O or other operations requiring special privileges).
Error_Handling: reference (thread) applies to (virtual processor);

The Error_Handling property specifies the ARINC 653 process (AADL thread) operating
within the partition as the error handler. This ARINC 653 process is then supposed to receive
notification of errors and take appropriate actions to recover them.
Error_Level_Type: type enumeration
 (Module_Level, Partition_Level, Process_Level);

The Error_Level_Type type lists all potential error levels: in a module (AADL processor),
partition (AADL virtual processor) or process (AADL thread).
HM_Error_ID_Level_Type: type record (
 ErrorIdentifier : aadlinteger;
 Description : aadlstring;
 ErrorLevel : ARINC653::Error_Level_Type;
 ErrorCode : ARINC653::Supported_Error_Code;);

The HM_Error_ID_Level_Type property records all information related to a fault that may
occur within a module. ErrorIdentifier is unique and is then re-used by the
HM_Error_ID_Actions property. The Description provides a basic description using
natural language. The ErrorLevel indicates at which level the error occurs while the

SAE AS5506A - 24 -

ErrorCode designates the related error (such as scheduling error).
HM_Error_ID_Levels: list of ARINC653::HM_Error_ID_Level_Type
 applies to (processor);

The HM_Error_ID_Levels property lists all errors that may occurs within a module using the
HM_Error_ID_Level_Type type.
HM_Error_ID_Action_Type : type record (
 ErrorIdentifier : aadlinteger;
 Description : aadlstring;
 Action : aadlstring;);

The HM_Error_ID_Action_Type type lists all useful information related to error recovery.
The ErrorIdentifier is the unique identifier for an error and is one included with the
HM_Error_ID_Levels property. The Description is a textual description of the error using
natural language. The Action is a string describing the action, potentially the name of a
function used in the underlying ARINC 653 runtime to recover the error.
HM_Error_ID_Actions: list of ARINC653::HM_Error_ID_Action_Type
 applies to (processor, virtual processor, thread);

The HM_Error_ID_Actions is a list of action used to recover an error, either at the module
(AADL processor), partition (AADL virtual processor) or process (AADL thread) level.
State_Information_Type: type record (
 Identifier : aadlinteger;
 Description : aadlstring;);

The State_Information_Type type contains all information related to an ARINC 653 mode:
an Identifier (that is potentially similar to the one of the ARINC 653 implementation) and a
Description that uses natural language.
State_Information: ARINC653::State_Information_Type applies to (mode);

The State_Information property associates an ARINC 653 mode with an AADL mode.
Queueing_Discipline_Type: type enumeration (Fifo, By_Priority);

The Queueing_Discipline_Type type lists all potential queueing discipline on ARINC 653
communication mechanisms (such as ARINC 653 queueing ports or ARINC 653 buffers).
Queueing_Discipline: ARINC653::Queueing_Discipline_Type
 applies to (port);

The Queueing_Discipline property reflects the queueing discipline of the ARINC 653
runtime for a given port. It indicates the dispatching policy for an ARINC 653 process (AADL
thread component) waiting for a new value on a port.
Schedule_Window : type record (
 Partition : reference (virtual processor, processor);
 Duration : time;
 Periodic_Processing_Start : aadlboolean;
);

The Schedule_Window type specifies a time slot of the ARINC 653 module. The Partition
attribute represents the partition assigned to this slot. The Duration attribute capture the time

SAE AS5506A - 25 -

allocated to the partition. The Periodic_Processing_Start specifies if all periodic tasks
should start when the partition is activated.
Module_Schedule : list of ARINC653::Schedule_Window

 applies to (processor, virtual processor);

The Module_Schedule property the schedule time slots in the module. This is a list of all time
slots assigned for each partition.
Deadline_Type : enumeration (soft, hard)

 applies to (thread);

The Deadline_Type property specifies the kind of deadline associated for a task. It
corresponds to the same attribute associated to an ARINC 653 process.
Time_Capacity : Time

 applies to (thread);

The Time_Capacity represents the time allocated to each task.

end ARINC653;

SAE AS5506A - 26 -

Appendix B Informative section

This informative section illustrates ARINC 653 systems modeling by providing examples and
validation examples.

B.1 System validation using the ARINC 653 annex

(54) The ARINC 653 standard defines an XML-style notation to describe system requirements and
deployment of an ARINC 653 architecture.

(55) Here is a partial list of what could be validated from the AADL model:

a. Scheduling of each ARINC 653 module. AADL models describe partitions content,
including threads (ARINC 653 processes) and intra-partition communication. Thanks to
this finer-grain modeling, the user can verify partition-level scheduling, as well as the
scheduling of the overall system.

b. Bus load. With AADL, system designers can precisely specify which connections use a
bus. Thus, the user can verify the bus loading and if data might be delayed, due to
various issues (overload, …)

(56) In general, modeling ARINC 653 systems with AADL would offer many benefits, because the
language models the complete runtime system with its requirements, not just a subset of the
system. Thus, using a model-based approach to design ARINC 653 systems with AADL can
provide useful verification features.

(57) The definition of the verification rules is beyond the scope of this annex. Readers would refer to
the toolset that supports this AADL ARINC 653 annex.

SAE AS5506A - 27 -

B.2 Example with one module

(58) The following example shows a system with two partitions. It shows the components involved in
the modeling of ARINC 653 system and illustrates the mapping of ARINC 653 concepts to the
AADL.

a. The first ARINC 653 partition is modeled with the AADL process
partition1_process (which models the space isolation) bound to the AADL virtual
processor part1 (which models intra-partition runtime).

b. In the same way, the second partition is modeled with the process
partition2_process and the virtual processor part2.

c. The scheduling algorithm used in each partition is specified in the virtual
processor component that models the runtime within each partition.

d. The main memory (mem) is divided into two memory components (part1em and
part2em). Each partition process (partition1_process and
partition2_process) is bound to a memory component.

e. The ARINC 653 module (kernel) schedules the partitions on the processor and
therefore provides the runtime at the processor level. In AADL, the processor
concept includes the runtime environment. Therefore, the ARINC 653 kernel and the
physical processor itself are specified with the AADL processor component. It
contains properties (ARINC653::Module_Schedule,
ARINC653::Module_Major_Frame) that describe scheduling requirements (major
time frame, window slots and their allocation).

f. In the first partition (partition1_process), an intra-partition communication that
uses ARINC 653 buffers is specified (AADL event data ports). This communication
is made between AADL thread components representing ARINC 653 processes
(order and temperature).

g. In the second partition (partition2_process), an intra-partition communication that
corresponds to blackboards is added (AADL shared data component). This
communication is made between the two threads of the partition (printer and
receiver).

h. In the second partition (partition2_process), a communication using AADL event
ports between two AADL thread components (ARINC 653 processes) is added.

i. A shared data component between the two threads (printer and receiver) of the
second partition is added. The shared data is protected from concurrent accesses using
ARINC 653 semaphores.

SAE AS5506A - 28 -

(59) There is the graphical representation of our example.

Graphic representation of our example

SAE AS5506A - 29 -

(60) There is the textual representation of our example. The textual representation includes
properties on each component.

package arincexample1

public

with ARINC653;

data integer
end integer;

data ordercmd
end ordercmd;

data protected_data
properties
 Concurrency_Control_Protocol => Protected_Access;
end protected_data;

-- Now, declare the virtual processors that model
-- partition runtime.

virtual processor partition1_rt
properties
 Scheduling_Protocol => (RMS);
end partition1_rt;

virtual processor implementation partition1_rt.impl
end partition1_rt.impl;

virtual processor partition2_rt
properties
 Scheduling_Protocol => (RMS);
end partition2_rt;

virtual processor implementation partition2_rt.impl
end partition2_rt.impl;

subprogram sensor_temperature_spg
end sensor_temperature_spg;

subprogram sensor_receiveinput_spg
end sensor_receiveinput_spg;

subprogram commandboard_receiveinput_spg
end commandboard_receiveinput_spg;

subprogram commandboard_printinfos_spg
end commandboard_printinfos_spg;

-- Threads for the first partition

thread sensor_temperature_thread

SAE AS5506A - 30 -

features
 tempout: out data port integer;
 order: in event data port ordercmd;
properties
 Initialize_Entrypoint =>
classifier (arincexample1::sensor_temperature_spg);
 Priority => 42;
 Stack_Size => 100 Kbyte;
 Period => 20 ms;
 Compute_Execution_Time => 10 ms .. 12 ms;
 Deadline => 40 ms;
end sensor_temperature_thread;

thread implementation sensor_temperature_thread.impl
end sensor_temperature_thread.impl;

thread sensor_receiveinput_thread
features
 commandin: in event data port integer;
 order: out event data port ordercmd;
properties
 Initialize_Entrypoint =>
classifier (arincexample1::sensor_receiveinput_spg);
 Priority => 10;
 Stack_Size => 100 Kbyte;
 Period => 20 ms;
 Compute_Execution_Time => 8 ms .. 10 ms;
 Deadline => 40 ms;
end sensor_receiveinput_thread;

thread implementation sensor_receiveinput_thread.impl
end sensor_receiveinput_thread.impl;

-- Threads for the second partition

thread commandboard_receiveinput_thread
features
 temp: in data port integer;
 tempavg : requires data access integer {ARINC653::Queueing_Discipline => FIFO;};
 newavg: out event port;
 need_semaphore : requires data access protected_data {ARINC653::Queueing_Discipline => FIFO;};
properties
 Initialize_Entrypoint =>
classifier (arincexample1::commandboard_receiveinput_spg);
 Priority => 42;
 Stack_Size => 100 Kbyte;
 Period => 20 ms;
 ARINC653::Time_Capacity => 7 ms;
 Compute_Execution_Time => 5 ms .. 7 ms;
 Deadline => 40 ms;
end commandboard_receiveinput_thread;

thread commandboard_printinfos_thread
features
 ordersensor: out event data port integer;
 tempavg : requires data access integer {ARINC653::Queueing_Discipline => FIFO;};
 newavg: in event port;
 need_semaphore : requires data access protected_data {ARINC653::Queueing_Discipline => FIFO;};

SAE AS5506A - 31 -

properties
 Initialize_Entrypoint =>
classifier (arincexample1::commandboard_printinfos_spg);
 Priority => 43;
 Stack_Size => 100 Kbyte;
 Period => 20 ms;
 ARINC653::Time_Capacity => 6 ms;
 Compute_Execution_Time => 2 ms .. 6 ms;
 Deadline => 40 ms;
end commandboard_printinfos_thread;

-- Now, declare process that model partition address space

process partition1_process
features
 queueingin: in event data port integer
{Queue_Size => 4;
 ARINC653::Timeout => 5ms;
 ARINC653::Queueing_Discipline => FIFO;};
 -- In the context of a event data port, the ARINC653::Timeout property
 -- is the timeout we used in the APEX functions.
 -- More, the Queue_Size property is used to compute the size of the queue
 -- of the port.
 -- Finally, the ARINC653::Queueing_Discipline indicates how you handle queuing
 -- data and how data are classified in the queue.
 samplingout: out data port integer;
end partition1_process;

process implementation partition1_process.impl
subcomponents
 temperature : thread sensor_temperature_thread.impl;
 order : thread sensor_receiveinput_thread.impl;
connections
 bufferconnectionexample: port order.order -> temperature.order;
 c1 : port queueingin -> order.commandin;
 c2 : port temperature.tempout -> samplingout;
end partition1_process.impl;

process partition2_process
features
 queueingout: out event data port integer {ARINC653::Timeout => 10ms;};
 -- In the context of a event data port, the ARINC653::Timeout property
 -- is the timeout we used in the APEX functions.
 samplingin: in data port integer
{ARINC653::Sampling_Refresh_Period => 10ms;};
 -- The ARINC653::Timeout apply only to in data port. It is the refresh
 -- period for sampling ports.
end partition2_process;

process implementation partition2_process.impl
subcomponents
 receiver : thread commandboard_receiveinput_thread;
 printer : thread commandboard_printinfos_thread;
 sem : data protected_data;
 blackboard : data integer;
connections
 -- example of intra-partition communication with data ports (blackboards)
 blackboardconnection1: data access blackboard -> printer.tempavg;

SAE AS5506A - 32 -

 blackboardconnection2: data access blackboard -> receiver.tempavg;
 -- example of intra-partition communication with event port (events)
 eventconnectionexample: port receiver.newavg -> printer.newavg;
 c0 : port printer.ordersensor -> queueingout;
 c1 : port samplingin -> receiver.temp;
 c2 : data access sem -> receiver.need_semaphore {ARINC653::Timeout => 20 ms;};
 c3 : data access sem -> printer.need_semaphore {ARINC653::Timeout => 10 ms;};
end partition2_process.impl;

-- Main runtime

processor powerpc
end powerpc;

processor implementation powerpc.impl
subcomponents
 part1: virtual processor partition1_rt.impl;
 part2: virtual processor partition2_rt.impl;
properties
 ARINC653::Module_Major_Frame => 50ms;

 ARINC653::Module_Schedule =>
 ([Partition => reference (part1);
 Duration => 10 ms;
 Periodic_Processing_Start => false;],
 [Partition => reference (part2);
 Duration => 10 ms;
 Periodic_Processing_Start => false;],
 [Partition => reference (part1);
 Duration => 30 ms;
 Periodic_Processing_Start => false;]
);
end powerpc.impl;

-- Memory
memory partition1_memory
properties
 Base_Address => 0;
 ARINC653::Memory_Type => (Code_Memory);
end partition1_memory;

memory partition2_memory
properties
 Base_Address => 100;
 ARINC653::Memory_Type => (Code_Memory);
end partition2_memory;

memory main_memory
end main_memory;

memory implementation main_memory.impl
subcomponents
 part1mem: memory partition1_memory;
 part2mem: memory partition2_memory;
end main_memory.impl;

system arincsystem

SAE AS5506A - 33 -

end arincsystem;

system implementation arincsystem.impl
subcomponents
 mem : memory main_memory.impl;
 cpu : processor powerpc.impl;
 partition1_pr : process partition1_process.impl;
 partition2_pr : process partition2_process.impl;
connections
 samplingconnection: port partition1_pr.samplingout ->
 partition2_pr.samplingin;
 queueingconnection: port partition2_pr.queueingout ->
partition1_pr.queueingin;
properties
 -- bind partition process to their associated
 -- runtime (virtual processor)
 Actual_Processor_Binding =>
(reference (cpu.part1)) applies to partition1_pr;
 Actual_Processor_Binding =>
(reference (cpu.part2)) applies to partition2_pr;

 -- bind partition process to their address spaces
 -- (memory components)
 Actual_Memory_Binding =>
(reference (mem.part1mem)) applies to partition1_pr;
 Actual_Memory_Binding =>
(reference (mem.part2mem)) applies to partition2_pr;
end arincsystem.impl;

end arincexample1;

SAE AS5506A - 34 -

B.3 Example with two modules

(61) The following example illustrates the modeling of a distributed ARINC 653 system with two
modules. This example illustrates the modeling of a communication between two ARINC 653
modules with AADL.

a. In the first module, three partitions are defined. One partition communicates (it sends
data) ; the second does not communicate. The third contains the device driver for the
network interface. Since the third partition contains a device driver it is considered in
ARINC 653 to be a system partition.

b. Device drivers are specified using the Device_Driver property in the textual
representation. Driver internal are not represented in the graphic version since there is
no standardized way to represent properties in the graphic notation of AADL.

c. Each partition (even system partitions that execute device drivers) is bound to a part of
the main memory (modeling of different address spaces).

d. The second module, contains two partitions : one communicates and the second
contains the device driver for the network interface.

e. These two ARINC 653 modules communicate through AADL event data ports. It maps
the concept of ARINC 653 queueing ports between two ARINC653 modules.

f. Notice that the ARINC 653 modules communicate across a bus named rtbus. The
association between the bus and its driver is modeled with an access connection.

(62) There is the graphical representation of this example

SAE AS5506A - 35 -

(63) There is the textual representation of this example

package arincexample2
public
with ARINC653;

-- First, define generic component
data integer
end integer;

memory memchunk
end memchunk;

memory mainmemory
end mainmemory;

bus anybus
end anybus;

bus implementation anybus.i
end anybus.i;
thread network_driver_thread
properties
 Stack_Size => 4 Bytes;
 Code_Size => 10 Bytes;
 Period => 200 ms;
 Compute_Execution_Time => 5 ms .. 10 ms;
end network_driver_thread;

thread implementation network_driver_thread.i
end network_driver_thread.i;

abstract network_driver_partition
end network_driver_partition;

abstract implementation network_driver_partition.i
subcomponents
 thr : thread network_driver_thread.i;
end network_driver_partition.i;

device network_interface
features
 thebus: requires bus access anybus.i;
properties
 Device_Driver => classifier (arincexample2::network_driver_partition.i);
end network_interface;

device implementation network_interface.i
end network_interface.i;

virtual processor partition_runtime
properties
 Scheduling_Protocol => (RMS);
end partition_runtime;

processor arinckernel

SAE AS5506A - 36 -

end arinckernel;

-- Then, we define the first module and its subcomponents.

processor implementation arinckernel.module1
subcomponents
 part1 : virtual processor partition_runtime
{ARINC653::DAL => LEVEL_A;};
 part2 : virtual processor partition_runtime
 {ARINC653::DAL => LEVEL_B;};
 part3 : virtual processor partition_runtime
{ARINC653::DAL => LEVEL_C;};
properties
 ARINC653::Module_Major_Frame => 40ms;

 ARINC653::Module_Schedule =>
 ([Partition => reference (part1);
 Duration => 10 ms;
 Periodic_Processing_Start => false;],
 [Partition => reference (part2);
 Duration => 10 ms;
 Periodic_Processing_Start => false;],
 [Partition => reference (part3);
 Duration => 20 ms;
 Periodic_Processing_Start => false;]
);
end arinckernel.module1;

memory implementation mainmemory.module1
subcomponents
 mem1 : memory memchunk;
 mem2 : memory memchunk;
 mem3 : memory memchunk;
end mainmemory.module1;

thread module1_thread_part1
features
 sensorout : out event data port integer;
end module1_thread_part1;

-- Thread for the first partition

thread module1_thread_part2
end module1_thread_part2;

-- Thread for the second partition

process module1_process_part1
features
 sensorout : out event data port integer{Queue_Size => 1;
 ARINC653::Timeout => 5ms;
 ARINC653::Queueing_Discipline => FIFO;};
end module1_process_part1;

process implementation module1_process_part1.impl
subcomponents
 mythread : thread module1_thread_part1;
connections

SAE AS5506A - 37 -

 c0 : port mythread.sensorout -> sensorout;
end module1_process_part1.impl;

-- Process for the first partition

process module1_process_part2
end module1_process_part2;

process implementation module1_process_part2.impl
subcomponents
 mythread : thread module1_thread_part2;
end module1_process_part2.impl;

-- Process for the second partition

system module1_system
features
 thebus: requires bus access anybus.i;
 sensorout : out event data port integer;
end module1_system;

system implementation module1_system.impl
subcomponents
 netif : device network_interface.i;
 mainmemory : memory mainmemory.module1;
 cpu : processor arinckernel.module1;
 process_part1 : process module1_process_part1;
 process_part2 : process module1_process_part2;
connections
 c0 : port process_part1.sensorout -> sensorout;
 c1 : bus access thebus -> netif.thebus;
properties
 Actual_Processor_Binding => (reference (cpu.part1)) applies to process_part1;
 Actual_Processor_Binding => (reference (cpu.part2)) applies to process_part2;
 Actual_Processor_Binding => (reference (cpu.part2)) applies to netif;
 Actual_Memory_Binding => (reference (mainmemory.mem1)) applies to process_part1;
 Actual_Memory_Binding => (reference (mainmemory.mem2)) applies to process_part2;
 Actual_Memory_Binding => (reference (mainmemory.mem3)) applies to netif;
end module1_system.impl;

-- System that contain everything for the first module

-- Now, we declare the second module

processor implementation arinckernel.module2
subcomponents
 part1 : virtual processor partition_runtime;
properties
 ARINC653::Module_Major_Frame => 40ms;
 ARINC653::Module_Schedule =>
 ([Partition => reference (part1);
 Duration => 20 ms;
 Periodic_Processing_Start => false;],
 [Partition => reference (part1);
 Duration => 20 ms;
 Periodic_Processing_Start => false;]
);
end arinckernel.module2;

SAE AS5506A - 38 -

thread module2_thread_part1
features
 sensorin : in event data port integer;
end module2_thread_part1;

process module2_process_part1
features
 sensorin : in event data port integer{Queue_Size => 1;
 ARINC653::Timeout => 5ms;
 ARINC653::Queueing_Discipline => FIFO;};
end module2_process_part1;

process implementation module2_process_part1.impl
subcomponents
 thread_part1 : thread module2_thread_part1;
connections
 c0 : port sensorin -> thread_part1.sensorin;
end module2_process_part1.impl;

memory implementation mainmemory.module2
subcomponents
 mem1 : memory memchunk;
 mem2 : memory memchunk;
end mainmemory.module2;

system module2_system
features
 thebus : requires bus access anybus.i;
 sensorin : in event data port integer;
end module2_system;

system implementation module2_system.impl
subcomponents
 mainmemory : memory mainmemory.module2;
 cpu : processor arinckernel.module2;
 process_part1 : process module2_process_part1.impl;
 netif : device network_interface.i;
connections
 c0 : port sensorin -> process_part1.sensorin;
 c1 : bus access thebus -> netif.thebus;
properties
 Actual_Processor_Binding => (reference (cpu.part1)) applies to process_part1;
 Actual_Processor_Binding => (reference (cpu.part1)) applies to netif;
 Actual_Memory_Binding => (reference (mainmemory.mem1)) applies to process_part1;
 Actual_Memory_Binding => (reference (mainmemory.mem2)) applies to netif;
end module2_system.impl;

-- Now, we declare the main system that contains both modules

system arinc653system
end arinc653system;

system implementation arinc653system.impl
subcomponents
 module1 : system module1_system.impl;
 module2 : system module2_system.impl;

SAE AS5506A - 39 -

 rtbus : bus anybus.i;
connections
 conn1 : port module1.sensorout -> module2.sensorin;
 busaccess_module1 : bus access rtbus -> module1.thebus;
 busaccess_module2 : bus access rtbus -> module2.thebus;
properties
 Actual_Connection_Binding => (reference (rtbus)) applies to conn1;
end arinc653system.impl;
end arincexample2;

	A.1 Rationale
	A.2 ARINC 653 partition management (ARINC 653 Module)
	A.3 ARINC 653 partitions modeling
	A.4 Multi processors architectures
	A.5 ARINC 653 processes modeling
	A.6 ARINC 653 inter-partition communication modeling
	A.7 ARINC 653 intra-partition communication modeling
	A.8 ARINC 653 buffers modeling
	A.9 ARINC 653 blackboards modeling
	A.10 ARINC 653 events modeling
	A.11 ARINC 653 semaphores modeling
	A.12 ARINC 653 memory requirements modeling
	A.13 ARINC Health Monitor (HM) modeling
	A.14 ARINC 653 modes/states modeling
	A.15 ARINC 653 application-specific Hardware & Device Drivers
	A.16 Summary of modeling rules
	A.17 ARINC 653 Property Set
	Appendix B Informative section
	B.1 System validation using the ARINC 653 annex
	B.2 Example with one module
	B.3 Example with two modules

