

 AEROSPACE
 STANDARD

SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is
entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”
SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.
Copyright © 2004 SAE International
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of SAE.
TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)
 Tel: 724-776-4970 (outside USA)
 Fax: 724-776-0790
 Email: custsvc@sae.org

SAE WEB ADDRESS: http://www.sae.org

 AS5506A

 2015-01-27

ARCHITECTURE ANALYSIS & DESIGN LANGUAGE (AADL) V2 CODE
GENERATION ANNEX DOCUMENT

This Architecture Analysis & Design Language (AADL) standard document was
prepared by the SAE AS-2C Architecture Description Language Subcommittee,
Embedded Computing Systems Committee, Aerospace Avionics Systems Division.

SAE AS5506 V2

- - - 2 - - -

TABLE OF CONTENTS

A.1	 Scope ... 3	
A.2	 Structure of the document .. 4	
A.3	 Naming conventions ... 4	
A.3.1	 Ada mapping ... 5	
A.3.2	 C mapping ... 5	
A.4	 Mapping of AADL packages ... 5	
A.4.1	 Ada mapping ... 5	
A.4.2	 C mapping ... 6	
A.5	 Mapping data types components ... 6	
A.5.1	 Mapping of Data_Model .. 6	
A.5.2	 Mapping of Base_Types .. 6	
A.5.3	 Mapping of data components .. 7	
A.5.4	 Other cases ... 10	
A.6	 Mapping of AADL subprograms ... 10	
A.6.1	 Ada mapping ... 11	
A.6.2	 C mapping ... 15	
A.6.3	 Management of port variables ... 18	
A.7	 Using AADL services inside subprograms ... 19	
A.7.1	 Using AADL ports to communicate ... 19	
A.7.2	 Subprograms attached as entrypoints ... 21	
A.7.3	 Accessing data components ... 22	
A.7.4	 Managing modes ... 23	

ANNEX 1	 MAPPING OF BASE_TYPES ... 23	
Annex 1.1.	 Ada mapping ... 24	
Annex 1.2.	 C mapping ... 24	

ANNEX 2	 AADL RUNTIME SERVICES ... 25	
Annex 2.1.	 Ada mapping ... Erreur ! Signet non défini.	
Annex 2.2.	 C mapping ... Erreur ! Signet non défini.	

ANNEX 3	 CODE_GENERATION PROPERTY SET .. 26	

SAE AS5506 V2

- - - 3 - - -

 Code Generation
Normative

A.1 Scope

(1) The AADL allows the end user to model Distributed Real-Time and Embedded systems.
Such systems would run atop an AADL runtime, eventually built over a complete
runtime system (Ada, Java), or a real-time operating system or RTOS (with a C/POSIX
API, etc.). Services provided by the AADL runtime can be manipulated by model entities
(like subprogram implementation). In this context, guidelines and specifications are
required to build the code referenced by such entities.

(2) The purpose of this annex is to enable the mapping of AADL model entities onto
programming languages, and the mapping of the AADL runtime services onto these
languages.

(3) This document targets the Ada and C languages. Other languages are expected to be
regular and to follow similar considerations. We retained Ada 2012 and C11 language
specifications, as they are the latest revisions of these two ISO standards and use their
corresponding short name, without mention of the actual version being used.

(4) This document only addresses how the user can insert its own code to interact with the
AADL runtime and elements from the models. It details how to map AADL
identifiers (section A.3), packages (section A.4), data types (section A.5),
subprograms (section A.6), AADL runtime services (section A.6.3)

(5) It addresses neither the actual implementation of the AADL runtime nor the use of
actual underlying operating system services made by the AADL runtime.

(6) Different methods of implementation can be contemplated for supporting AADL
concepts at source-code level. Among the solutions, one can pick: “manual coding”
where the designer does AADL-to-code translation manually; “API based”, where the
designer manipulates an API representing the AADL runtime; “compilation based”,
where part of the code is generated from the AADL model. In this document, we aim at
being generic to let implementation decide how to combine code and the AADL runtime,
and perform specific optimizations.

(7) The objective of this document is to provide a portable definition of coding guidelines to
map AADL concepts and model entities onto a programming language, so that source
code can be included and manipulated by different tools.

SAE AS5506 V2

- - - 4 - - -

A.2 Structure of the document

(8) The document is structured as follows: for each AADL concept, a mapping is proposed
for both the Ada and C languages.

(9) The definition of the following rules obeys to the following rationale:

a. Naming/Mapping: one needs to name the AADL entities of its model in
the target programming language. This is presented in section A.3 that
lists naming conventions for mapping AADL identifiers, and in section A.4
that lists how to map an AADL hierarchy of packages.

b. Data consistency: one needs to manipulate data types. This document
relies on the Data modeling annex to provide support for data types.
Section A.5 illustrates how to map AADL data types definition onto the
target language.

c. Functional routines execution: one needs to execute subprograms.
Section A.6 illustrates how AADL subprograms are mapped.

d. Interaction within distributed environments: one needs to interact with
other entities. Section A.6.3 shows how to use AADL runtime services.

(10) This Annex document also completes for C and Ada the mappings of AADL runtime
services defined in the AADL core document, or data types defined using the “Data
Modeling Annex Document; and provides language-specific packages and files.

A.3 Naming conventions

(11) Depending on the mapping requirements, one need to map either component
type/implementation onto language constructs, e.g. for mapping AADL data component
types onto their corresponding data type definition in source code, or to map component
classifier onto corresponding references (e.g. variables, etc). This is discussed in the
next sections.

(12) AADL identifiers (such as name of subcomponents, component types or
implementations) are converted into language identifiers. A method of implementation
should use identifiers from the declarative model whenever possible, as these represent
the user view on the model.

(13) If the target language supports a namespace mechanism, it is recommended to use this
mechanism to avoid the use of the fully qualified name.

(14) To avoid name clashing with language-specific keywords or to follow language-specific
syntactic rules, the following rules are defined:

SAE AS5506 V2

- - - 5 - - -

A.3.1 Ada mapping

(15) To respect the Ada rules of identifier construction (AARM, 2.3 (2)), some characters that
may appear in AADL entity names must be replaced. Here is a list:

• “.” must be replaced by underscores “_”.

• Two consecutive underscores “__” must be replaced by “_U_”.

(16) The string “AADL_” must prefix each identifier that clashes with an Ada keyword. If the
concatenation provokes a clashing between identifiers, we add another concatenation of
the same string until there is no longer name clashing.

(17) AADL string properties referencing to an Ada source code element (like
Compute_Entrypoint_Source_Text) should be fully qualified Ada name.

A.3.2 C mapping

(18) To respect the C rules for identifiers (C RM 6.4.2.1), all identifiers derived from AADL
identifiers are turned to lowercase.

(19) The string “aadl_” must prefix each identifier that clashes with a C keyword. If the
concatenation provokes a clashing between identifiers, we add another concatenation of
the same string until there is no longer name clashing.

(20) AADL string properties referencing to a C source code entity (like
Compute_Entrypoint_Source_Text) should be the name of the corresponding
entity.

(21) C requires special rules for mapping some constructs, these are listed after:
enumeration type in section A.5.

(22) An implementation method is allowed to define additional rules in case of symbol
conflicting with the ones defined by the underlying operating systems.

(23) Note: Such clash may occur if the implementation of the AADL runtime requires the use
of C function from the C standard library (e.g. read), and the user defines also a
subprogram called “read”.

A.4 Mapping of AADL packages

A.4.1 Ada mapping

(24) AADL packages and Ada packages differ in visibility rules. There are no nested
packages in AADL, whereas Ada favor them. To avoid introducing unwanted visibility to
parent package, AADL packages are mapped onto Ada packages in a flat hierarchy.

SAE AS5506 V2

- - - 6 - - -

AADL hierarchy is mapped onto a single name, where dots are replaced with one
consecutive underscore. All identifiers are turned to lower case. For instance, the
identifier Foo::Bar is mapped onto foo_bar and Foo::Bar::Baz onto
foo_bar_baz.

A.4.2 C mapping

(25) AADL packages have no equivalent in C. AADL hierarchy is mapped onto a single
name, where dots are replaced with two consecutive underscores. All identifiers are
turned to lower case. For instance, the identifier Foo::Bar is mapped onto foo__bar
and Foo::Bar::Baz onto foo__bar__baz.

A.5 Mapping data types components

(26) The AADL proposes several ways to define data types: either one uses the Data
Modeling annex, or relies on AADL properties applied to data component types or
implementation. See discussion in the Data Modeling Annex document, part of
AS5506A document.

A.5.1 Mapping of Data_Model

(27) The Data Modeling annex of AADLv2 standard defines properties so that the system
designer can define its own data. These properties are defined in the AADL property set
Data_Model.

(28) An implementation method may provide a tool to map AADL data component type
definitions onto the destination language.

(29) An implementation method may restrict the set of data types supported by the runtime
to reflect actual hardware limitations (e.g. no floating point) or coding restrictions (e.g.
no types of unbounded size).

A.5.2 Mapping of Base_Types

(30) The Data Modeling annex defines base types to be manipulated by the end user, in the
AADL package Base_Types.

(31) The implementation method shall provide an implementation of the AADL package
Base_Types in the destination language, or mechanism to generate it. The user may
directly reference entities from this implementation in its own source code.

(32) An implementation method may restrict the content of Base_Types to the types whose
properties are supported in the Data_Model property set.

(33) An Ada package mapped from Base_Types is provided for Ada in Annex 1.1.

SAE AS5506 V2

- - - 7 - - -

(34) A C header file mapped from Base_Types is provided for C in Annex 1.2.

A.5.3 Mapping of data components

(35) Each data component denoting a basic type (Boolean, Character, Enum, Float, Fixed,
Integer, String) is mapped to an equivalent data type in the target language. The name
of the type follows rules on identifiers mapping. Its type derives from the properties of
the AADL component.

(36) Mapping of the Based_Types package is provided in Annex 1

(37) Complex data components (Array, Struct, Union) are mapped to the corresponding
construct in the target language. The name of the type follows rules on identifier
mapping. Its type derives from the properties of the AADL component.

a. The following array definition

 data One_Dimension_Array

 properties

 Data_Model::Data_Representation => Array;

 Data_Model::Base_Type => (classifier
(Base_Types::Integer));

 Data_Model::Dimension => (42);

 end One_Dimension_Array;

would be mapped to

-- Ada

type One_Dimension_Array

is array (1 .. 42)of Base_Types.Integer_Type;

/* C */

typedef base_types__integer_types one_dimension_array [42];

b. The following struct definition

 data A_Struct1

 properties

 Data_Model::Data_Representation => Struct;

 Data_Model::Base_Type =>

SAE AS5506 V2

- - - 8 - - -

(classifier (Base_Types::Float),

 classifier (Base_Types::Character));

 Data_Model::Element_Names => ("f1", "c2");

 end A_Struct1;

would be mapped to

-- Ada

type A_Struct1 is record

 F1 : Base_Types.Float;

 C2 : Base_Types.Character;

end record;

/* C */

typedef struct{

 base_types__float f1;

 base_types__character c2;

} a_struct1;

c. The following union definition

 data A_Union1

 properties

 Data_Model::Data_Representation => Union;

 Data_Model::Base_Type =>

 (classifier (Base_Types::Float), classifier
(Base_Types::Character));

 Data_Model::Element_Names => ("f1", "f2");

 end A_Union1;

would be mapped to

 -- Ada

SAE AS5506 V2

- - - 9 - - -

 type A_Union_1_Flag is (F1_Flag, F2_Flag);

 type A_Union1 (A : A_Union_1_Flag) is record

 case A is

 when F1_Flag =>

 F1 : Float;

 when F2_Flag =>

 F2 : Character;

 end case;

 end record;

/* C */

typedef union {

base_types__float f1;
 base_types__character f2;

} a_union1;

(38) C enum requires a special rule for mapping. C does not allow multiple use of the same
enumerator. In this case, the name of the enumerator is prefixed by the name of the
AADL data components type.

a. The following definition

 data An_Enum

 properties

 Data_Model::Data_Representation => Enum;

 Data_Model::Enumerators => ("foo", "bar");

end An_Enum;

would be mapped to

-- Ada

 type An_Enum is (Foo, Bar);

/* C */

typedef enum { an_enum_foo, an_enum_bar } an_enum;

SAE AS5506 V2

- - - 10 - - -

(39) Complex data components that reference other data components are mapped onto data
structures of the target language: Ada record types (resp. C structure definitions). Each
field defining identifier is mapped from the subcomponent name given in the data
component implementation with the rules on identifiers mapping. The type of the field is
the Ada (resp. C) type mapped from the data corresponding component. The name of
the type follows rules on identifiers mapping. Its type derives from the properties of the
AADL component.

A.5.4 Other cases

(40) The system designer may decide not to use the Data Modeling annex. In this case, he
may use the Source_Language, Type_Source_Name and Source_Text properties
to specify the definition of its data type in the target language. In this case, the user may
reference directly this type, without further refinements.

a. The following definition

 data C_Type

 properties

 Source_Language => (C);

 Source_Text => ("types.h");

 Type_Source_Name => "the_type";

 end C_Type;

it is expected the user provides a C source file named “types.h” where a type “the_type”
is defined.

A.6 Mapping of AADL subprograms

(41) AADL subprograms denote library elements that may later be used by threads. In this
section, we review mapping rules for subprograms without dependencies to the AADL
runtime.

(42) We illustrate how the Ada mapping may incorporate C or Ada subprograms, and how
the C mapping may incorporate C subprograms.

(43) The actual implementation of the mapped subprograms depends on the nature of the
corresponding AADL subprogram component. Subprogram components can be
classified in many ways depending on the value of the Source_Language,
Source_Name and Source_Text standard AADL properties, the existence or absence

SAE AS5506 V2

- - - 11 - - -

of call sequences in the subprogram implementation. There are three kinds of
subprogram components: empty subprograms, opaque subprograms and pure call
sequence subprograms.

A.6.1 Ada mapping

(44) In this section, we discuss the mapping of AADL subprograms onto an Ada AADL
runtime. AADL subprograms can be either Ada code, but also C or other formalisms.

(45) AADL subprograms are mapped onto Ada procedures. In case of data-owned
subprograms, they are managed in the related generated package. The parameters of
the procedure are mapped from the subprogram features with respect to the following
rules:

• The name of the subprogram is derived from the name of the subprogram classifier

• The parameter name is mapped from the parameter feature name

• The parameter type is mapped from the parameter feature data type

• The parameter orientation is the same as the feature orientation (“in”, “out” or “in
out”).

• The order of parameters is the same as the corresponding AADL subprogram
component.

(46) Empty subprograms correspond to AADL subprogram types or implementations for
which there is neither Source_Language nor Source_Name nor Source_Text
values nor call sequences. Such kind of subprogram components is an empty
placeholder for future implementation. It should evolve to one of the two other kinds in
the production AADL model.

a. The AADL snippet below is an example of an empty subprogram:

subprogram sp

features

 e : in parameter message;

 s : out parameter message;

end sp;

b. An Ada mapping for this subprogram could be:

procedure sp (e : in message; s : out message) is

 pragma Unreferenced (e…);

SAE AS5506 V2

- - - 12 - - -

begin

 null;

end sp;

(47) Opaque subprograms are AADL subprograms for which the Source_Language
property indicates the programming language of the implementation (C or Ada). The
Source_Name property indicates the name of the target language subprogram
implementing the AADL subprogram:

a. For Ada subprograms, the value of the Source_Name property is the fully
qualified name of the subprogram (e.g. My_Package.My_Spg). If the
package is stored in a file named according to the Ada compiler
conventions, there is no need to give a Source_Text property for Ada
subprograms. Otherwise the Source_Text property is necessary for the
compiler to fetch the implementation files.

b. For C subprograms, the value of the Source_Name property is the name
of the C subprogram implementing the AADL subprogram. The
Source_Text is mandatory for this kind of subprogram and it must give
one of the following information: the path (relative or absolute) to the C
source file that contains the implementation of the subprogram; the path to
one or more precompiled object file(s) that implement(s) the AADL
subprogram; the path to one or more precompiled C libraries that
implement(s) the AADL subprogram.

c. These properties can be used together, for example one may give the C
source file that implements the AADL subprogram, an object file that
contains entities used by the C file and a library that is necessary to the C
sources or the objects. In this case, the code generation consists of
creating a shell for the implementation code. In the case of Ada
subprograms, the generated subprogram renames the implementation
subprogram (using the Ada renaming facility).

d. Here is a mapping example

subprogram sp

features

 e : in parameter message;

 s : out parameter message;

end sp;

subprogram implementation sp.impl

SAE AS5506 V2

- - - 13 - - -

properties

 Source_Language => Ada;

 Source_Name => “Repository.Sp_Impl”;

end sp.impl;

e. The generated code for the sp.impl component is:

with Repository;

-- ...

procedure sp_impl (e : in message; s : out message)

 renames Repository.Sp_Impl;

f. The code of the Repository.Sp_Impl procedure is provided by the
designer and must conform to the sp.impl signature as defined in the
architecture. The coherence between the two subprograms will be verified
by the Ada compiler. The fact that the hand-written code is not inserted in
the generated shell allows this code to be written in a programming
language other than Ada. Thus, if the implementation code is C we have
this situation:

subprogram sp

features

 e : in parameter message;

 s : out parameter message;

end sp;

subprogram implementation sp.impl

properties

 Source_Language => C;

 Source_Name => “implem”;

 Source_Text => “code.c”;

end sp.impl;

g. The Source_Name value is interpreted as the name of the C subprogram
implementing the AADL subprogram.

h. Path information to actual source file can be added in Source_Text, or
left under the control of the implementation method.

i. The generated code for the sp.impl component is:

SAE AS5506 V2

- - - 14 - - -

procedure sp_impl (e : in message; s : out message);

pragma Import (C, sp_impl, “implem”);

j. This approach will allow us to have a certain flexibility by separating the
generated signature from the hand-written code. We can modify the AADL
description without affecting the hand-written code (the signature should
not be modified of course).

(48) Pure call sequence subprograms: in addition to the opaque approach, which consists
of delegating all the subprogram body writing to the user, AADL allows to model
subprogram as a pure call sequence to other subprograms. Example:

subprogram spA

features

 s : out parameter message;

end spA;

subprogram spB

features

 s : out parameter message;

end spB;

subprogram spC

features

 e : in parameter message;

 s : out parameter message;

end spC;

subprogram spA.impl

calls {

 call1 : subprogram spB;

 call2 : subprogram spC;};

connections

 cnx1 : parameter call1.s -> call2.e;

 cnx2 : parameter call2.s -> s;

end spA.impl;

a. In this case, the subprogram connects together a number of other
subprograms. In addition to the call sequence, the connections clause

SAE AS5506 V2

- - - 15 - - -

completes the description by specifying the connections between
parameters. The pure call sequence model allows the generation of
skeleton code referring to other subprograms: the calls in the call
sequence correspond to Ada procedure calls and the connections
between parameters correspond to the possible intermediary variables.
The Ada code generated for the subprogram spA.impl is:

procedure spA_impl (s : out message) is

 cnx1 : message;

begin

 spB (cnx1);

 spC (cnx1, s);

end spA_impl;

b. Note that in case of pure call sequence subprograms, the AADL
subprogram must contain only one call sequence. If there is more than
one call sequence, it’s impossible - in this case - to determine the relation
between them.

A.6.2 C mapping

(49) In this section, we discuss the mapping of AADL subprograms onto a C AADL runtime.
We review some options available.

(50) AADL subprograms are mapped onto C functions. In case of data-owned subprograms,
they are managed in the related generated package. The parameters of the procedure
are mapped from the subprogram features using the following rules:

• The parameter name is mapped from the parameter feature name previously
generated using the data mapping rules in section A.5.

• The parameter type is mapped from the parameter feature data type

• The parameter orientation of the C subprogram follows the feature orientation: by
copy for “in” parameters, by reference for “out” or “in out”.

• The order of parameters is the same as the corresponding AADL subprogram
component.

(51) Empty subprograms correspond to AADL subprograms for which there is neither
Source_Language nor Source_Name nor Source_Text values nor call sequences.
Such kind of subprogram components is empty placeholders for future implementation.

SAE AS5506 V2

- - - 16 - - -

a. The AADL snippet below is an example of an empty subprogram:

subprogram sp

features

 e : in parameter message;

 s : out parameter message;

end sp;

b. An C mapping for this subprogram could be:

void sp (message e, message* s) {

 /* TO BE IMPLEMENTED */

}

(52) Opaque subprograms are AADL subprograms for which the Source_Language
property indicates the programming language of the implementation (C or Ada). The
Source_Name property indicates the name of the subprogram implementing the
subprogram:

a. For C subprograms, the value of the Source_Name property is the name
of the C subprogram implementing the AADL subprogram. The
Source_Text is mandatory for this kind of subprogram and it must give
one of the following information: the path (relative or absolute) to the C
source file that contains the implementation of the subprogram; or, the
path to one or more precompiled object files that implement the AADL
subprogram; or, the path to one or more precompiled C library that
implement the AADL subprogram.

b. These information can be used together, for example one may give the C
source file that implements the AADL subprogram, an object file that
contains entities used by the C file and a library that is necessary to the C
sources or the objects. In this case, the code generation consists of
creating a shell for the implementation code. Here is a mapping example

subprogram sp

features

 e : in parameter message;

 s : out parameter message;

end sp;

subprogram implementation sp.impl

SAE AS5506 V2

- - - 17 - - -

properties

 Source_Language => C;

 Source_Name => “C_sp_impl”;

 Source_Text => “sp.c”;

end sp.impl;

c. The generated code for the sp.impl component is:

void sp_impl (message e, message* s) {

 C_sp_impl (e, s); /* Call user code */

}

(53) Pure call sequence subprograms: In addition to the opaque approach, which consist
of delegating all the subprogram body writing to the user, AADL allows to model
subprogram as a pure call sequence to other subprograms. Example:

subprogram spA

features

 s : out parameter message;

end spA;

subprogram spB

features

 s : out parameter message;

end spB;

subprogram spC

features

 e : in parameter message;

 s : out parameter message;

end spC;

subprogram spA.impl

calls {

 call1 : subprogram spB;

 call2 : subprogram spC;};

connections

 cnx1 : parameter call1.s -> call2.e;

SAE AS5506 V2

- - - 18 - - -

 cnx2 : parameter call2.s -> s;

end spA.impl;

a. In this case, the subprogram connects together a number of other
subprograms. In addition to the call sequence, the connections clause
completes the description by specifying the connections between
parameters. The pure sequence call model allows to generate complete
code : the calls in the call sequence corresponds to C procedure calls and
the connections between parameters correspond to the possible
intermediary variables. The C code generated for the subprogram
spA.impl is:

void spA_impl (message* s) {

 message cnx1;

 spB (&cnx1);

 spC (cnx1, &s);

}

b. Note that in case of pure call sequence subprograms, the AADL
subprogram must contain only one call sequence. If there is more than
one call sequence, it’s impossible - in this case - to determine the relation
between them.

A.6.3 Management of port variables

(54) Port variables represent a way to access the port of a thread or a subprogram. Those
are the only place where user’s code can interact with ports.

(55) To take into account multiple instances, the AADL runtime introduces a specific opaque
type called an AADL context.

(56) One specific AADL context type is generated for each thread or subprogram component
type or implementation. Its name is defined as follows

a. For Ada: <component_identifier>_Context

b. For C: __<component_identifier>_context

(57) This opaque type is a record whose members are the ports available in this particular
context, but also access to data. The name of these members follows identifiers
mapping rules defined in this annex.

SAE AS5506 V2

- - - 19 - - -

(58) The Code_Generation::Convention property controls the generation of specific
structures to manage port variables.

a. Legacy convention does not generate this information. It is the default
value

b. AADL convention generates port contextual structure

(59) A method of implementation may infer the actual value of the Convention property
based on the model information.

(60) The Code_Generation property set is present in Annex 3

A.7 Using AADL services inside subprograms

A.7.1 Using AADL ports to communicate

(61) AADL ports allow subprograms to send or receive events or data to other entities in the
model. Ports are accessed through runtime services as defined in section A.9 of the
standard AADLv2 document. These services are defined as AADL subprograms, but
some implementation details exist, mostly in the way ports are defined.

(62) The following provides a solution to these implementation details in a way that is
portable and consistent with the concept of port variables.

(63) AADL defines mechanisms to let subprograms interact with the environment through
ports and access to data components. This section illustrates how to use these
mechanisms

(64) One instance of the context type is passed as parameters to each user’s subprograms
that need to interact with ports. This parameter is used as parameter specifying the port
variable to use.

a. Here is an example, using AADLv2

thread Operator_T

features

 Gear_Cmd: out event port;

properties

 Dispatch_Protocol => Periodic;

 Period => 10 Sec;

 Compute_Entrypoint_Source_Text => "On_Operator";

SAE AS5506 V2

- - - 20 - - -

 source_text => ("flight-mgmt.c");

end Operator_T;

and the corresponding C implementation

void on_operator (__operator_t_context *self) {

/* … */

__aadl_send_output (self->gear_cmd, &request);

}

(65) Note: in this example, the AADL convention is implicitly enforced as the subprogram
implicitly requires access to port variable, and there is no way to deduce subprogram
output parameters.

(66) An AADL model may connect in or out subprogram parameters to thread ports. In
this case, there is no need to use explicitly AADL runtime services. A method
implementation is allowed to generate directly the corresponding code from the AADL
model if the subprogram follows the Legacy convention.

a. Let us consider the following AADL model

subprogram Do_Ping_Spg

features

 Data_Source : out parameter Simple_Type;

properties

 Code_Generation::Convention => Legacy;

end Do_Ping_Spg;

thread P

features

 Data_Source : out event data port Simple_Type;

end P;

thread implementation P.Impl

calls

Mycalls: {

 P_Spg : subprogram Do_Ping_Spg;

SAE AS5506 V2

- - - 21 - - -

};

connections

 parameter P_Spg.Data_Source -> Data_Source;

 -- Out parameter of P_Spg is passed to the port

 -- variable automatically

end P.Impl;

then, it is sufficient to implement Do_Ping_Spg this way

procedure Do_Ping_Spg (Data_Source : out Simple_Type);

and have the method of implementation generates the corresponding glue code to
propagate the out parameter to the corresponding port variable.
Note: This allows the seamless integration of existing code in an AADL model, for instance for opaque subprograms.

A.7.2 Subprograms attached as entrypoints

(67) In some cases, the user may want to integrate source code as entrypoint attached to
threads in event (data) ports using the Compute_Entrypoint standard property and
its several derivations.

(68) The first parameter is the AADL context information, discussed in section A.6.3

(69) In the case of an event port, the signature of the corresponding subprogram adds no
further parameter.

(70) In the case of an event data port, the signature has an additional unique parameter
derived from the type of the port.

a. Here is an example, using AADLv2

thread HCI_T

features

 Stall_Warning : in event data port Ravenscar.Integer

 {Compute_Entrypoint_Source_Text =>
"Manager.On_Stall_Warning";};

 Engine_Failure : in event port

 {Compute_Entrypoint_Source_Text =>
"Manager.On_Engine_Failure";};

end HCI_T;

SAE AS5506 V2

- - - 22 - - -

b. And the corresponding Ada and C declarations

-- Ada

package Manager is

 procedure On_Stall_Warning

 (Ctx: HCI_T_Context; Stall_Warning :
Ravenscar_Integer);

 procedure On_Engine_Failure (Ctx : AADL_Context);

/* C */

void on_stall_warning

(__hci_t_context ctx, ravenscar_integer
stall_warning);

void on engine_failure (__hci_t_context ctx);

A.7.3 Accessing data components

(71) Data components can support subprogram access as a way to model accessors to its
internal data. Corresponding user subprograms have additional parameters that
represent the internal data to interact on. See the following example:

subprogram Update

features

 this : requires data access POS.Impl;

end Update;

subprogram implementation Update.Impl

properties

 source_language => Ada95;

 source_name => “Toy.Update”;

end Update.Impl;

data Position_Internal_Type

properties

 Data_Model::Data_Representation => Integer;

SAE AS5506 V2

- - - 23 - - -

end Position_Internal_Type;

data Position

features

 Update : provides subprogram access Update.Impl;

properties

 Concurrency_Control_Protocol => <..>;

end Position;

data implementation Position.Impl

subcomponents

 Field : data Position_Internal_Type;

properties

 Data_Model::Data_Representation => Struct;

end Position.Impl;

(72) This is mapped as the following in Ada

procedure Read (Field : in out POS_Internal_Type);

(73) The AADL runtime shall handle calls to this subprogram using the concurrency protocol
mandated by the user. There is no need for explicit call to Get_Ressources and
Release_Resources runtime services.

Note: an implementation method is allowed to support only a subset of allowed mechanisms, depending on the
support from the target operating system.

A.7.4 Managing modes

(74) Mode changes are triggered through specific ports. A user subprogram may trigger one
by sending an event to the corresponding port.

(75) A user subprogram may use the AADL runtime service Current_System_Mode to
determine is current mode of operation.

Annex 1 Mapping of Base_Types

(76) The AADL Base_Types package proposes a list of general utility data types.

SAE AS5506 V2

- - - 24 - - -

Annex 1.1. Ada mapping

(77) This package can be mapped onto Ada using the types provided by either the Standard
package (types without size) or Interfaces as defined by the Ada 2012 reference
manual.

(78) In order to support previous versions of Ada, an implementation method is allowed to
select a different mapping that preserves the semantics of types.

with Interfaces;

package Base_Types is

 type AADL_Boolean is new Standard.Boolean;

type AADL_Integer is new Standard.Integer;

 type Integer_8 is new Interfaces.Integer_8;

 type Integer_16 is new Interfaces.Integer_16;

type Integer_32 is new Interfaces.Integer_32;

type Integer_64 is new Interfaces.Integer_64;

type Unsigned_8 is new Interfaces.Unsigned_8;

type Unsigned_16 is new Interfaces.Unsigned_16;

type Unsigned_32 is new Interfaces.Unsigned_32;

type Unsigned_64 is new Interfaces.Unsigned_64;

type AADL_Natural is new Standard.Integer; -- XXX incomplete range?

type AADL_Float is new Standard.Float;

type Float_32 is new Interfaces.IEEE_Float_32;

type Float_64 is new Interfaces.IEEE_Float_64;

 type AADL_Character is new Standard.Character;

end Base_Types;

Annex 1.2. C mapping

(79) The AADL Base_Types package proposes a list of general utility data types. This
package can be mapped onto C11 using the types provided by either stdint.h or
stdbool.h standard header files.

SAE AS5506 V2

- - - 25 - - -

(80) In order to support more ancient C compilers, an implementation method is allowed to
select a different mapping that preserves the semantics of types, or one that is a
superset of the intended type.

(81) For instance, Base_Types::Natural cannot be represented in C, as there is no
native positive only numeric types.

/* C mapping of AADL package base_types */
#ifndef __BASE_TYPES_H__
#define __BASE_TYPES_H__

#include<stdint.h>
#include<stdbool.h>

typedef bool base_types_boolean;

typedef int8_t base_types_int8;
typedef int16_t base_types_int16;
typedef int32_t base_types_int32;
typedef int64_t base_types_int64;

typedef uint8_t base_types_uint8;
typedef uint16_t base_types_uint16;
typedef uint32_t base_types_uint32;
typedef uint64_t base_types_uint64;

typedef float base_types_float32; /* As per IEEE 754 */
typedef double base_types_float64;
typedef char base_types_character;

#endif /* __BASE_TYPES_H__ */

Annex 2 AADL runtime services

(82) The AADL core standard defines two sets of runtime services in section A.9. Application
runtimes services declare service subprograms that can be called by the application
source text directly. The second set of services is concerned with services internal to
the AADL runtime, and is not the subject of this annex.

(83) We recall that the following API is available to the user:

a. Send_Output: explicitly cause events, event data, or data to be
transmitted through outgoing ports to receiver ports.

b. Put_Value: allows the source text of a thread to supply a data
value to a port variable.

SAE AS5506 V2

- - - 26 - - -

c. Receive_Input: explicitly requests port input on s incoming ports to
be frozen and made accessible through the port variables.

d. Get_Value: allows access to the current value of a port variable.

e. Get_Count: determine whether a new data value is available on a
port variable, and in case of queued event and event data ports, how
many elements are available to the thread in the queue.

f. Next_Value: provides access to the next queued element of a
port variable as the current value. A NoValue exception is raised if
no more values are available.

g. Updated allows the source text of a thread to determine whether
input has been transmitted to a port since the last Receive_Input
service call.

(84) To favor optimization, code safety and reliability, the proposed mapping does not
enforce any convention on the organization of the code: AADL API function may be
placed in any relevant package. This allows for multiple implementation of the AADL
API, with one dedicated instance per AADL model entities. The only recommended
practice is to preserve the name of the functions and of its parameters.

Annex 3 Code_Generation property set

(85) The following property set is defined to control various aspects of the code generation:

property set Code_Generation_Properties is

Convention: enumeration (AADL, Legacy) => Legacy

 applies to (subprogram);

-- Under the Legacy convention, no context information

-- for port variables is generated.

-- The AADL convention generates such information

Parameter_Usage: enumeration (By_Value, By_Reference)

 applies to (data access, parameter);

Return_Parameter: aadlboolean => false applies to (parameter);

 -- if true, out parameter is actually a return parameter

SAE AS5506 V2

- - - 27 - - -

end Code_Generation_Properties;

