
Issues on EMV2 propagation paths
Consistency between definitions and legality, consistency

and semantics rules

Denis Buzdalov, Sergey Zelenov
ISPRAS

December 30, 2016

1 Introduction

When considering particular properties and correctness of error propagation paths in EMV2,
several questions occur.

Not all terms are clearly defined and some of notions that can be derived from the text,
induce doubts on whether what was meant.

2 General terms

Considering a single error propagation path, characteristics of the source (outgoing) propa-
gation point will be denoted by the index “s” and destination’s incoming propagation point by
“d”.

Propagation points can be of error propagation and error containment types. The error
type set of the outgoing (source) error propagation will be denoted by ps, and the error type
set of the outgoing error containment will be denoted by cs. Similarly, the error type set of the
incoming (destination) error propagation will be denoted by pd, and the error type set of the
incoming error containment will be denoted by cd.

Annex says about unspecified error types that can or cannot be propagated by a component.
They will be denoted by us and ud for the source and destination side respectively. The meaning
of these notions will be discussed later. Until discussed, us and ud will be used as some set of
error types in expressions.

3 Formalization

Having denotions from above, we will formalize legality, consistency and semantic rules
from the section “Error Propagation Paths and User-defined Propagation Points and Paths”.
Described sets are depicted on the figure 1.

Since some of statements express obligations and some express possibilities (deontic modal-
ity), we will use standard modal operators � and ♦ to express it. So, �ϕ means “ϕ must hold”
and ♦ϕ means “ϕ may hold”, i.e. “it is possible for ϕ to hold”. It is important to understand
that for any ϕ the following equivalency is hold: ♦ϕ ≡ ¬�¬ϕ, where ¬ is a logical negation.

1



Rule Formalization

Error propagation and error containment definition consequence �ps ∩ cs = ∅

�pd ∩ cd = ∅

Legality rules

The error type set of the outgoing error propagation must be contained
in the error type set of the incoming error propagation.

�ps ⊆ pd

The error type set of the incoming error containment declaration must
be contained in the error type set of the outgoing error containment
declaration.

�cs ⊇ cd

The direction of the error propagation or error containment for the
source must be outgoing and for the destination must be incoming.

cannot be expressed us-
ing ps, pd, cs and etc.

Consistency rules

The error type set for the error propagation source of an error propaga-
tion path must not intersect with the error type set of the destination
error containment declaration or with or the set of unspecified error
propagation types.

�ps ∩ cd = ∅

�ps ∩ ud = ∅

The set of unspecified error propagation types of an error propagation
path source must not intersect with the error type set of the destination
error containment declaration or the set of unspecified error propagation
types.

�us ∩ cd = ∅

�us ∩ ud = ∅

The destination of an error propagation path is robust against unin-
tended error propagations if the type set of its incoming error propaga-
tion declaration contains the error type set of the source error propa-
gation, error containment declaration, and any unspecified error prop-
agation type.

♦pd ⊇ ps

♦pd ⊇ cs

♦pd ⊇ us

Semantic rules

The first rule shows that it is acceptable when a source indicates it does
not intend to propagate an error of a certain type and the destination
indicates it does not expect such as error type or the destination is
silent regarding a known error type, i.e., it has not specified an error
propagation or error containment for the given type.

�cs ⊆ cd ∪ ud

The second rule indicates that it is acceptable for the destination to
indicate that it expects error of a given type, while the source indicates
that it does not intend to propagate errors of the same type.

♦cs ∩ pd 6= ∅

The third rule indicates that it is acceptable for the destination to
indicate that it expects error of a given type, and the source indicates
error propagation of the same type or nothing is specified for the given
error type.

�ps ∪ us ⊇ pd

The fourth rule indicates that it is not acceptable for the destination
to indicate that it does not expect errors of a given type, while the
source indicates that it intends to propagate such errors or is silent

with respect to that error type.

�(ps ∪ us) ∩ cd = ∅

The fifth rule indicates that it is not acceptable for the destination to
be silent on the propagation of a known error type and the source to
indicate propagation or also be silent.

�ud ∩ (ps ∪ us) = ∅

Notice, that we have emphasized the word silent above. It is not said what exactly is means,
but we understand it as if “unspecified” notion was used there.

2



Figure 1: General view of discussed sets

4 “Unspecified” interpretations

4.1 The problem

We have realized that what is meant under the “unspecified error propagation types set” is
not clear if we talk about it more or less formally. Moreover, depending on formalization, there
are some contradictions between rules.

After that, we brought up five variants of possible formal definitions for us and ud denoting
unspecified error propagation types set at source and destination sides. These variants are
pretty different: some of them are intuitive, some of them are rather simple, some of them do
eliminate all contradictions with rules, some of them are symmetrical.

We are going to present all of them in the order of their creation with description of their
properties. After all, we will put them in a summarizing table.

4.2 Designations

We will denote by U a (somewhat phantom) universum set of error types. Its meaning is a
potential whole set of possible error types.

To eliminate misunderstandings, an operation of set difference between sets α and β will be
denoted by α \ β.

4.3 Intuitive definitions

Initially we were thinking of “unspecified” as of “those other, that are not specified”, i.e.
those error types that are not present in the error propagations or error containment types. It
can be formalized using the universum set: us = U \ (ps ∪ cs) and ud = U \ (pd ∪ cd). This
definition is complex because of usage of U, but it is not the only problem. First of all, such
definition contradicts with the second consistency rule. Also, it really disturbs to satisfy the
third semantics rule, because some finite set must include some possibly infinite or unrelated
set.

To fix this complexity, we thought what if “unspecified sets” are all finite and defined in the
following way: us = pd \ ps and ud = cs \ cd. On the figure 1 us is red (without a dark-purple

part) including the intersection with the green set, and ud is yellow (without a dark-green part)
including the intersection with the purple set. This looks exactly as the previous one except
excluding error types unrelated to the error propagation path (i.e., “unspecified” has path-local
meaning). This approach gives much simplified definition, unfortunately still contradictory.

3



Such definition contradicts with the second consistency, the second semantic and the fifth
semantic rules.

So, unfortunately, none of definitions that we could imagine using general understanding of
the “unspecified” word were consistent with defined rules.

4.4 Rules-consistent definitions

Then, we were trying to make adequate definitions, satisfying all the rules. At the first
time, we could not get rid of U and thus, we have got us = pd \ps and ud = U\ (pd ∪cd) (i.e., we
have changed only ud). This definition is consistent, but it is not symmetric — “unspecified”
sets on different ends of an error propagation path are defined differently.

After that, we were thinking how to get rid of U, and we have got the following: us = pd \ps

and ud = cs \ (pd ∪ cd). Again, we have changed only ud with the similar principle of getting
rid of U: definition of unspecified error types was made to be path-local. On the figure 1 ud

is yellow (without a dark-green part) excluding the intersection with the purple set. This
definition became simpler and all sets are finite but it is not symmetric either.

By the way, it is easy to see that using these definitions, all consistency and semantic
rules can be derived from legality rules and from definitions of error propagation and error
containment. Thus, it means that consistency and semantic rules actually do not add any
additional limitations or explanations.

4.5 Symmetrization

The last thing we have done is we have tried to make the last simple and consistent definition
to be symmetric. So, we have got us = pd \ (ps ∪cs) and ud = cs \ (pd ∪cd). At this time we have
changed only us according to ud definition. Such way of definition is simple and symmetrical.
The second semantic rule is the only thing the definition contradicts with.

4.6 Summary

To sum up all the variants described above, they were put with their characteristics in the
table below.

Formalization Finite Symmetrical Consistent

us = U \ (ps ∪ cs)
ud = U \ (pd ∪ cd)

no yes no

us = pd \ ps

ud = cs \ cd

yes yes no

us = pd \ ps

ud = U \ (pd ∪ cd)
no no yes

us = pd \ ps

ud = cs \ (pd ∪ cd)
yes no yes

us = pd \ (ps ∪ cs)
ud = cs \ (pd ∪ cd)

yes yes no
(to be discussed)

So, depending on whether symmetry is important or not, we would suggest the fourth or
the fifth definition. If symmetry is not so important, the fourth definition gives the best variant
since it is simple and consistent. If symmetry is important, we would propose to remove the
second semantic rule and to use the fifth definition to make the whole system consistent.

Of course, we believe there are some other definitions and interpretations. If there are some,

4



we would suggest to start the discussion to eliminate contradictions in the standard using some
ways other, than we have proposed.

5 Conclusion

There are some possible contradictions or misinterpretations in the EMV2 standard due to
lack of formalization. We tried to formalize some part of the standard to be able to find out
what is wrong. It was found that some notions that are widely used are specified with bad
precision.

We tried to eliminate possible contradictions proposing several formalizations.
We are calling for a discussion on this topic and to make a decision on particular contradic-

tions. Additionally, we are pointing on the general problem of misformalizations in the standard
and propose to work more on it.

5


