

DISTRIBUTION A. Approved for public release: distribution unlimited.

This material is based upon work supported by U.S. Army Research
Development and Engineering Command, Aviation Development Directorate
under Contract No. W911W6-17-D-0003. Any opinions, findings and
conclusions or recommendations expressed in this material are those of
the author (s) and do not necessarily reflect the views of the U.S. Army
Research Development and Engineering Command, Aviation Development
Directorate.
[bookmark: _GoBack]
Except for material owned by The Open Group as defined below, Adventium Labs, sole owner of the copyright of this material, hereby grants to the SAE International permission to change, modify, and otherwise utilize materials in this document, in whole or in part, to meet its goals and objectives related to the AADL Standard. Adventium Labs further grants SAE International permission to copyright future versions, including the final standard, as SAE International copyrighted material. This license grant does not extend to, and expressly excludes, materials copyrighted by other parties, such as The Open Group.

Adventium Labs acknowledges The Open Group for permission to include text/figures derived from its copyrighted Future Airborne Capability Environment (FACE) Technical Standard, Edition 3.0, ©2017 The Open Group. FACE™ and the FACE™ logo are trademarks of The Open Group in the United States and other countries.

AADL Annex for the FACE™ Technical Standard, Edition 3.0	3
Typography Conventions	3
A.	Rationale	3
B.	Background and Assumptions	3
C.	Reference Example	8
D.	Packaging	9
E.	Data Model	10
F.	Data Model Views	11
G.	UoP Model	12
H.	TSS	13
I.	Routing	14
J.	IOSS	16
K.	FACE Health Monitoring and Fault Management (HMFM)	17
L.	FACE Profiles	17
M.	FACE Lifecycle Management	17
N.	FACE Artifact Parsing Guide	17
O.	FACE Property Set	17

[bookmark: _Toc379702946]AADL Annex for the FACE™ Technical Standard, Edition 3.0
Version 0.1.0, 2018-02-09
[bookmark: _Toc379702947]Typography Conventions
	Regular Text

	AADL Keyword

	FACE Keyword Introduction

	FACE Keyword

A. [bookmark: _Toc379702948]Rationale

1) This annex is intended to help component vendors and system integrators using the (Future Airborne Capability Environment) FACE Technical Standard. FACE Technical Standard Edition 3.0 [footnoteRef:1] provides a data modeling architecture but does not provide mechanisms for describing component behavior or timing properties. This document provides guidance for translating a FACE Standard Edition 3.0 Data Architecture XMI model[footnoteRef:2] into AADL so that behavior and timing properties can be added and analyzed. [1: Unless explicitly noted, all references to the FACE Technical Standard in this document refer to Edition 3.0.] [2: The FACE Technical Standard Edition 3.0 provides a data architecture meta model an an EMOF in section J.5.]

2) This annex supports the modeling, analysis, and integration of FACE artifacts in AADL. It gives AADL style guidelines and an AADL property set to provide a common approach to using AADL to express FACE architectures. Using common properties and component representations in AADL makes AADL models of FACE components portable and increases the utility of tools that operate on such AADL models.

B. [bookmark: _Toc379702949]Background and Assumptions
3) This document provides a mapping for FACE Technical Standard Edition 3.0 and AADL 2.2.
4) The FACE Technical Standard provides a framework for data architecture that enables service and application portability across platforms by requiring conformance to the FACE Technical Standard’s data modeling and software guidelines.
a) As illustrated in Figure 2, the FACE Technical Standard is divided into layers. Applications live in the Portable Components Segment (PCS). Services live in the Platform Specific Services Segment (PSSS). Individual applications or services in the PCS or PSSS layer are called Units of Portability (UoPs). UoPs communicate with one another using the Transport Service (TS).
b) Communication between UoPs is message based. In the FACE Technical Standard, messages are called views and are constructed from the FACE data model using queries.
c) In a system built from FACE conformant software, there is a single data architecture model. This data architecture model is composed by the system integrator using data models associated with each UoP in the system.
d) The fields that make up each inter-UoP message are taken from the data model. Each field in each message is associated with a hierarchy of data model elements. This means UoPs that do not use precisely the same data representation (e.g., metric versus imperial) can have their messages translated automatically through inspection of the data model.
i) For further information about the FACE Data Architecture, see section 2.3 of the FACE Technical Standard.
5) The FACE Technical Standard is designed to align with the ARINC653 standard (See section A.6 of the FACE Technical Standard). This document in turn is designed to align with the ARINC653 AADL Annex (AS5506).
a) The ARINC653 AADL annex instructs modelers to represent ARINC653 partitions as combinations of AADL virtual processors and AADL processes. This annex translates FACE elements to AADL components that can be used in conjunction with a processor and/or virtual processor, thereby permitting but not requiring adherence to ARINC653 AADL modeling norms.
6) The FACE Technical Standard data architecture is divided into three layers: The Data Model, UoP Model, and the Integration Model (see Figure 1). This document provides guidance for all three.
7) The FACE Technical Standard data model provides a realization hierarchy for multiple levels of data description (conceptual, logical, and platform). Most AADL analyses are not expected to require that multiple levels of the FACE Technical Standard data model are mapped to AADL.
a) [image: Macintosh HD:Users:tdsmith:Desktop:FACEDataArchitecture.jpg]
[bookmark: _Ref372783331]Figure 1 Data Architecture (extracted from FACE Technical Standard Edition 3.0)
8) All communication between the FACE PCS and PSSS is conducted via the TSS using Views defined in the Data Model (as shown in the top and right of Figure 2).
9) In addition to its data modeling approach to interoperability of services (the FACE PSSS) and applications (the FACE PCS), the FACE Technical Standard also provides operating system interface specifications and I/O device interface specifications. I/O device access is represented in the FACE IOSS (I/O Service Segment). The operating system interface is represented in the FACE OSS (Operating System Segment). See the left and bottom of Figure 2.
a) [image: Macintosh HD:Users:tdsmith:Desktop:ArchitectureSegmentsExample.jpg]
[bookmark: _Ref372791304]Figure 2 Architecture Segments Example. (Extracted from FACE Technical Standard Edition 3.0)
10) The terms specific to the FACE Technical Standard used in this annex are defined below:
a) FACE (Future Airborne Capability Environment): A government-industry software standard and business strategy for acquisition of affordable software systems that promotes innovation and rapid integration of portable capabilities across global defense programs. The FACE Standard also provides a data modeling language used to describe component interfaces.
b) FACE Conformance: A software component (Unit of Conformance (UoC)) is certified as FACE conformant when it has successfully been through an independent verification and certification process, which is defined by the FACE Conformance Program. This includes technical verification by a designated Verification Authority (VA) subsequent certification by the FACE Certification Authority (CA), and registration in the FACE Library. This certification represents that the software UoC meets the requirements of the FACE Technical Standard, which was designed to facilitate software portability. A FACE conformant data architecture is a .face file that adheres to the FACE Technical Standard Edition 3.0 metamodel. See section 1.5 of the FACE Technical Standard for more information.
c) Data Architecture Model: The whole of Figure 1 describes the contents of the Data Architecture Model. “Data Model” is often conflated with “Data Architecture Model.” The former is a subset of the latter.
i) Each system of integrated FACE conformant UoCs will ultimately have one Data Model, likely created from multiple input data models.
d) Data Model: A set of conceptual, logical, and platform entities used as the basis for view definition. Each platform entity refines a logical entity, and each logical entity refines a conceptual entity. See top of Figure 1.
i) Example: “Altitude” is conceptual, “meters above sea level” is logical, and “32bit unsigned integer” is platform.
ii) Since logical and conceptual issues have already been addressed, the data size (in bytes) used at the platform level is the primary property of interest.
e) UoP Model: A description of the UoPs in a given system of FACE conformant software and their associated views and connections. See middle of Figure 1.
i) The connections described in the UoP Model do not describe inter-UoP communication. They provide only the UoPs expectations of the type of connection it will have when integrated (e.g., sampling).
ii) An integrator will combine multiple UoP Models (one for each integrated UoP) into their integrated UoP Model.
f) Integration Model: A model describing the composition of FACE UoPs in a system and the inter-UoP message routing in the TSS. See bottom of Figure 1.
g) View: A FACE view is a message that can be passed between components. A view is composed of elements of a data model and is described by a query.
i) Example: A view “status” might include altitude, airspeed, and ground speed.
ii) Views are defined in the platform layer of the Data Model.
iii) Query: A FACE query is an SQL-like expression describing features of the FACE data model to use in a view.
iv) UoP (Unit of Portability): Another term for a UoC. Use of the term Unit of Portability highlights the portable and reusable attributes of a software component or Domain Specific Data Model (DSDM) developed to the FACE Technical Standard.
v) UoPs reside in the PCS or PSSS layers of the FACE reference architecture.
vi) Each UoP has an associated USM providing its data model definition and UoP Model definition.
h) UoC (Unit of Conformance): A DSDM or a software component designed to meet the requirements for an individual FACE segment. Units of Conformance must be verified as conformant to the FACE Technical Standard to be certified.
i) All FACE components in the PCS, TSS, PCS, and IOSS are UoCs.
i) TSS (Transport Service Segment): The TSS is responsible for sending messages (views) between UoPs. The TSS is also responsible for translating views between UoPs.
i) For example, the TSS might translate a “status” view to a “heartbeat” view with the same fields but different units (perhaps meters instead of feet).
ii) FACE Shared Data Model: An instance of a Data Model whose purpose is to define commonly used items and to serve as a basis for all other data models.
iii) The FACE shared data model provides common concepts such as altitude.
j) USM (UoP Supplied Model): A data model provided by a software supplier that documents the data exchanged by a UoC via the TS interface. An integrated system may incorporate many USMs.
i) The USM is provided as a .face file with each UoP.
k) Integrated Data Model: The system integrator combines FACE USMs to create the Integrated Data Model for the system.
l) FACE UoP Vendor: A UoP vendor creates the software, data model, and UoP model associated with a UoP. The data model and UoP model are delivered with the UoP software.
m) System Integrator: The system integrator is a stakeholder responsible for resolving USMs from FACE UoP vendors and for configuring the TSS that routes messages between UoPs.
n) FACE UUID: Every element in the Data Model has a unique identifier created using the UUID standard.
o) UoPInstance: A UoPInstance is a configuration item describing a UoP’s role(s) in a given system configuration as described by the Integration Model. A single UoP may have multiple instances in a system.
p) UoP Connection: A UoPConnection describes the UoP’s assumptions about its connection. A UoPConnection does not identify the sender or receiver on the other end of the connection (See Figure 6).
q) UoP EndPoint: A UoPEndPoint describes the routing configuration associated with a single UoPConnection (See Figure 6).
C. [bookmark: _Toc379702950]Reference Example
11) This annex uses the FACE Basic Avionics Lightweight Source Archetype (BALSA) example as a point of reference. BALSA source code and FACE models are available to members of The Open Group FACE Consortium.
a) Understanding of BALSA is not required to use this annex.

[image: Macintosh HD:Users:tdsmith:Documents:activeprojects:JMR:git:saic_tools:doc:FACE_to_AADL:BALSA_System.jpg]
Figure 3: BALSA modeled in AADL
D. [bookmark: _Toc379702951]Packaging
12) This annex does not provide specific packaging requirements. However, modelers are encouraged to create separate packages.
a) One package for the Data Model
b) One or more packages for UoPs
c) One package for each Integration Model
13) The USMs for each UoP will contribute both to the Data Model package and to the UoP package(s).
14) Example
	File
	Description
	Notes

	data_model.aadl
	data and data implementations corresponding to FACE entities and views
	

	IOS.aadl
	thread groups for IOS UoCs
	

	OSS.aadl
	components for the OSS
	

	PSSS.aadl
	thread groups for PSSS UoPs
	

	PCS.aadl
	thread groups for PCS UoPs
	

	TSS.aadl
	abstract defining the TSS
	

	integration_model.aadl
	system and system implementation for the overall system of FACE conformant components
	Optionally includes time and space partitioning via process and virtual processor

E. [bookmark: _Toc379702952]Data Model
15) The Data Model (top of Figure 1) describes data relevant to a system of FACE conformant software components. The System Integrator uses the FACE Shared Data Model and USMs provided by UoP vendors to construct the Integrated Data Model.
a) UoP vendors use or extend the Shared Data Model. This means that different UoPs will share an ontological hereditary between their views, easing the path to translating from one to the other.
16) Each entity in the Integrated Data Model is modeled in AADL as a data.
a) Modeling the realization hierarchy of Data Model entities is not necessary for most AADL analysis.

	FACE Entity
	AADL Entity
	Properties

	Data Model
	package (optional)
	

	Data Model Entity Composition: Conceptual
	data
	· FACE::UUID
· FACE::Realization_Tier => conceptual

	Data Model Entity Composition: Logical
	data or data extends…
	· FACE::UUID
· FACE::Realized_UUID
· FACE::Realization_Tier => logical

	Data Model Entity: Platform
	data or data extends…
	· FACE::UUID
· FACE::Realization_Tier => platform
· FACE::Realized_UUID
· Memory_Properties::Data_Size

17) Example

	Conceptual
	data aircraftID_Conceptual
 properties
 FACE::UUID => "{0540db6f-67fd-430c-bc72-84126daa00cc }";
 FACE::Realization_Tier => conceptual;
end aircraftID_Conceptual;

	Logical
	data aircraftID_Logical
 properties
 FACE::UUID => "{ cf4c9604-f2a4-4e38-8937-05fd08e00f0a}";
 FACE::Realization_Tier => logical;
end AircraftID_Logical;

	Platform
	data AircraftID_Platform extends aircraftID_logical
 properties
 FACE::UUID => "{5e4a3697-13b0-4c35-ba56-29f61f4cdc35}";
 FACE::Realization_Tier => platform;
end AircraftID_Platform;

F. [bookmark: _Toc379702953]Data Model Views
18) A FACE Platform View is composed of data from the platform tier of the FACE data model.
a) A Platform View’s contents are defined by a query, the semantics of which are provided in section J.3 of FACE Technical Standard Edition 3.0.
b) A Platform View’s organization is defined by a template, the semantics of which are provided in section J.4 of FACE Technical Standard Edition 3.0.
c) Each Platform View is modeled as a single data implementation.
d) The subcomponents of the data implementation are determined by the Platform View’s query.
e) The order of the subcomponents of the data implementation is determined by the Platform View’s template.

	FACE Entity
	AADL Entity
	Properties

	Conceptual View
	data implementation
	· FACE::UUID
· FACE::Realization_Tier => Conceptual

	Logical View
	data implementation…
	· FACE::UUID
· FACE::Realization_Tier => logical

	Platform View
	data implementation…
	· FACE::UUID
· FACE::Realization_Tier => platform

	UoP View
	data implemenation
	· FACE::UUID
· subcomponents

19) Example

	Platform View
	data implementation aircraft_config.impl
	subcomponents
		aircraftID: data AircraftID_Platform;
		tailNumber: data Tail_Number_Platform;
end aircraft_config.impl;

G. [bookmark: _Toc379702954]UoP Model
20) The scope of the FACE Data Architecture is restricted to the data exchanged by software. FACE 3.0 does not describe the physical attributes of a system (e.g., binding hardware to software).
21) All AADL components translated from FACE UoCs use the FACE::UUID property to denote the UUID of the FACE component from which they were derived.
22) A collection of UoP Instances using the same TSS is modeled as the system implementation.
23) The UoP model does not include routing of connections between UoPs. Connection routing is described in the FACE Integration Model.

[image: Macintosh HD:Users:tdsmith:Documents:activeprojects:JMR:git:saic_tools:doc:FACE_to_AADL:ADSB.linux.jpg]
[bookmark: _Ref376159116]Figure 4: Example UoP (ADSB.impl) shown inside a process (ADSB.linux)
24) Each FACE UoP is modeled in AADL as a thread group.
a) The FACE Technical Standard does not place requirements on threading of UoPs, however the standard does provide for multiple UoPs in a single ARINC653 partition. In Figure 4 a single UoP is shown inside a process. However, a single process could support multiple UoPs.
b) The ARINC653 AADL annex translates an ARINC653 partition to the combination of an AADL process and virtual processor, thus FACE UoPs must be modeled at the level of threads.
c) A single-threaded UoP is modeled as a thread group containing a single thread. In Figure 4 the UoP is called ADSB. It is of type ADSB.impl and is from the PSSS package.
d) UoPConnections on the UoP are modeled as ports on the UoP thread group. In Figure 4 the UoPConnection is called ATC_Data_In.
e) UoPs can be modeled as abstracts that are refined as thread groups. However, the use of abstract is not required and tooling may not treat an unrefined abstract as a UoP.
f) AADL ports on UoPs should reference Views via type constraints.

	FACE Entity
	AADL Entity
	Properties
	Notes

	UoP
	thread group
	· FACE::UUID
· FACE::FaceSegment => PSSS or PCS
· FACE::Profile

	Can also be modeled as an abstract, but thread group is preferred.

	UoPInstance
	thread group as subcomponent
	
	When a thread group is used as subcomponent of a process, it is acting as a UoPInstance.

	UoPConnection
	port with data type from associated view
	· FACE::UUID
· FACE::ViewUUID
	

25) Example

	UoP
	thread group ADSB
features
ADSB_From_ATCManager_Port: in data port balsa_data_model::atc_data.impl;
properties
FACE::UUID => "{5884a330-a191-498a-9378-11b61f3c1c77}";
end ADSB;
	
thread group implementation ADSB.impl
end ADSB.impl;

H. [bookmark: _Toc379702955]TSS
26) The TSS is modeled in AADL as an abstract that can be refined to accommodate varying levels of model detail.

	FACE Entity
	AADL Entity
	Properties

	TSS
	One abstract for the entire system implementation
	· FACE::UUID

	TSS (added detail)
	One abstract for the entire system implementation, refined as a virtual bus
	· FACE::UUID

	UoP to UoP message route
	connection bound to the TSS abstract.
	· FACE::UUID

I. [bookmark: _Toc379702956]Routing
27) The FACE Technical Standard specifies, but does not require, a formal model for the configuration of the TSS called the Integration Model. The Integration Model includes the routing of views (messages) between UoPs. Whether or not they opt to use the FACE Technical Standard Integration Model, system integrators will have to connect UoPs. This annex provides a standard style for their interconnection.
a) This document supports use of the FACE Integration Model as specified by the FACE Technical Standard.
b) This document provides guidance generally applicable to routing configurations.
28) The FACE Technical Standard integration metamodel provides mechanisms for describing inter-UoP communication, including view translation (adapting a message from one UoP to another).
a) The entities of the FACE Technical Standard integration metamodel are shown in Figure 5 and Figure 6.
29) A UoPInstance is a UoP as used in an Integration Model. A single UoP may be used multiple times in a FACE Integration Model. The UoP is modeled as a thread group and thread group implementation(s). When the UoP is used as a subcomponent, the subcomponent acts as a UoPInstance.
30) A UoP in the UoP Model defines its UoPConnections. These UoPConnections are modeled as ports in the thread group or thread group implementation. When the thread group used as a subcomponent, its ports act as UoPEndPoints.
a) A UoPEndPoint is a feature of the FACE Technical Standard Integration Model and describes part of the TSS configuration. Each UoPEndPoint refers to a single UoPConnection that it services (see Figure 6).
b) Note that a UoPConnection is not equivalent to an AADL connection.
c) Note that a UoPEndPoint is not directly equivalent to an AADL port. A UoPEndPoint and a UoPConnection together define an AADL port.
31) A TSNodeConnection describes the connection from a UoP to the TSS (not to another UoP)
32) A ViewTransporter is modeled as a connection responsible for sending views (messages) to and from UoPs.
33) A TransportChannel is modeled as an AADL bus to which a ViewTransporter connection is bound. For example, a FACE Integration Model might configure a view to be transported between UoPs by an ARINC653 Queuing Port ViewTransporter and adapted using a ViewTransformation.

	FACE Entity
	AADL Entity
	Properties

	Integration Model
	system implementation
	· FACE::UUID

	FACE Entity
	AADL Entity
	Properties

	UoP Instance
	thread group as subcomponent
	· FACE::UUID

	UoPOutputEndPoint
	port on thread group as subcomponent
	· FACE::UUID

	TSNodePort
	port on a TSS abstract
	· FACE::UUID

	TSNodeConnection
	subprogram call
	· FACE::UUID

	ViewTransporter
	connection
	· FACE::UUID

	TransportChannel
	bus with view transporter bound to it
	· FACE::UUID

	ViewFilter, ViewTransformation, ViewAggregation, ViewSource, ViewSink
	Subprogram in a refined TSS
	· FACE::UUID

[image:]
[bookmark: _Ref372792629]Figure 5 FACE Integration Package, extracted from the FACE Technical Standard Edition 3.0

[image:]
[bookmark: _Ref372792615][bookmark: _Ref373042327]Figure 6 FACE Integration Transport Package, extracted from the FACE Technical Standard Edition 3.0

J. [bookmark: _Toc379702957]IOSS
34) The IOSS Layer (bottom of Figure 2) provides an API but does not have a formal exchange model, as IOSS components are inherently specific to a particular platform.
a) IOSS components are UoCs but not UoPs, as they do not use the TSS to communicate.
b) IOSS components are modeled in AADL as abstracts.
c) A PSSS UoP’s use of IOSS functions is modeled in AADL using subprogram calls.
d) The physical component to which the IOSS service provides access is modeled in AADL as a device.
e) The bus used by the IOSS service to communicate with its physical component(s) is modeled in AADL as a bus access.

	FACE Entity
	AADL Entity
	Properties

	IOSS Service
	abstract
	· FACE::UUID
· FACE::Profile
· FACE::Segment=>IOS

	IOSS Device
	Device
	· FACE::UUID
· FACE::Segment=>IOS

	IOSS Bus
	bus access
	· FACE::UUID
· FACE::Segment=>IOS

K. [bookmark: _Toc379702958]FACE Health Monitoring and Fault Management (HMFM)
35) The FACE HMFM API is a subset of the ARINC653 HMFM API, which is described in the AADL ARINC653 annex.

L. [bookmark: _Toc379702959]FACE Profiles
36) The FACE Technical Standard provides several operating system profiles describing which system calls are legal for a UoC.
M. [bookmark: _Toc379702960]FACE Lifecycle Management
37) The FACE Lifecycle Management architecture is out of scope for the current version of this document, however the Lifecycle Management APIs, States, and Transitions will likely translate naturally to the AADL Behavior Annex.

N. [bookmark: _Toc379702961]FACE Artifact Parsing Guide
38) The Data Model, UoP Model, and Integration Model are provided in a standardized EMOF format provided in section J.5 of the FACE Technical Standard.

O. [bookmark: _Toc379702962]FACE Property Set
	property set FACE is
	Profile: type enumeration (security, safety_extended, safety, general);
	Tier: type enumeration (conceptual, logical, platform);
	UUID: aadlstring applies to (all);
	Realization_Tier: FACE::Tier applies to (all);
	segment: type enumeration (PSSS, PCS, IOSS, IOS, TSS);
	FaceSegment: FACE::segment applies to (all);
end FACE;

17
Copyright 2018 Adventium Labs.
image3.jpeg
balsa.linux
Implements balsa

TSS ADSB_PSSS
i TSS:balsa_tss
To_TS airconfig_in adsb_out_}

airconfig_out

]
AirConfig_out | egi_in airconfig_out

airconfig_out ¢
egi_out

EGI_To_TSS
= TSS_To_ATC
ol

egi_out

1
1 egi adsb_out atcPCS
H atc_m.linux

atc_m
PCS::ATCManager.

adsb_out ¢

ATC_To_ADSB_Port

image4.jpeg
"ADSB.linux
Implements ADSB.
ATC_Data_in

PSSS::ADSB.impl

ATC data_c ATC_Data_in

|
1
1
1
J

image5.png
B unitofportability] H integrationModel
(from uop)

2 transportaPILanguag
= designassurancelevel : DesignAssuranceLevel clement
2 partitionType : PartitionType o
= designassurancestandard : DesignAssurancestandard

2 faceProfile : FaceProfile RS

ogrammingLanguage i

realizes’
1

UoPinstance H Transportchannel | [H IntegrationContext]
= configurationURI: Estring

Lo —]

connection node

""u‘?.’-"‘T b

H UoPOutputendpoint | [H UopinputEndpoint | [H TsNodeConnection | [H Transportiode]

image6.png
destination

El TsNoderortBase | E TSNodeConnection
% Souce
B Connection] . |) g
connection iew
omiop) 1 B voPendpoint E TsNodeport 1

(from platform)

% period : EFloat

2 synchronizationstyle : SynchronizationStyle

H UoPOutputendpoint | [H UoPinputendpoint| [H TsNodeOutputport | [H TsNodelnputbort

outbort inport
H Viewtransporter | [H Viewaggregation | [H ViewTransformation H ViewFitter 0.1 -

H Transporiniode

channel %
1

H TransportChannel H Viewsource H Viewsink

image1.jpeg
FACE Architecture FACE Data Model Language Artifact Generation &
Model Element Groupings Artifacts

e e —

Data Model Element Groupings

-
Platform | Codeand |
| Configuration |
Data Model Da(t;[l,ﬂn:)del : :
Definition | |
Elements | :
Data Refinement (semantic, measurement, physical perspectives) : :
[
: I
I |
I |
UoP Model Element Grouping : :
|
Abstract UoP Model Elements : !
[
UoP Model i |
Definition | :
i |
I |
I |
I |
I |
I |
I |
' I
Abstract Integration Model i !
Integration Elements : |
Model i }
Definition i |
|
|
' I

_N
Refinement Message Transport l Artifact
Selection Definition —/ Generation

image2.jpeg
Operating

System
Segment

Operating
System

FACE Boundary

Fusion Own S| Fuel FACE
Po! Service Component

Platform-Specific Services Segment

Platform-Specific Device Services Platform-Specific Common ‘ Platform-Specific Graphics

Services >
GPS EGI OFR 998 /ystem-Level Health)| S°rVi®s
Device Monitoring

MIL-STD-1553

Language
Run-time

Component Health (Device Dnve,) (Device Driver) Graphics Driver
Framework || Monitoring

Interface Hardware

(e.g., MIL-STD-1553, Ethernet)

OFP
Device

Platform

GPS EGI

KEY

|] | | ~(O)~ FACE Defined Interface

External Interface

Displays

