

DISTRIBUTION A. Approved for public release: distribution unlimited.

This material is based upon work supported by U.S. Army Research Development and Engineering Command, Aviation Development Directorate

under Contract No. W911W6-17-D-0003. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author (s) and do not
necessarily reflect the views of the U.S. Army Research Development and Engineering Command, Aviation Development Directorate.

Except for material owned by The Open Group as defined below, Adventium Labs, sole owner of the copyright of this material, hereby grants to the SAE International permission
to change, modify, and otherwise utilize materials in this document, in whole or in part, to meet its goals and objectives related to the AADL Standard. Adventium Labs further
grants SAE International permission to copyright future versions, including the final standard, as SAE International copyrighted material. This license grant does not extend to,
and expressly excludes, materials copyrighted by other parties, such as The Open Group.

Adventium Labs acknowledges The Open Group for permission to include text/figures derived from its copyrighted Future Airborne Capability Environment (FACE) Technical
Standard, Edition 3.0, ©2017 The Open Group. FACE™ and the FACE™ logo are trademarks of The Open Group in the United States and other countries.

SAE footer placeholder.

TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)
 Tel: +1 724-776-4970 (outside USA)
 Fax: 724-776-0790
 Email: CustomerService@sae.org
SAE WEB ADDRESS: http://www.sae.org

 SAE values your input. To provide feedback
 on this Technical Report, please visit
 http://www.sae.org/technical/standards/PRODCODE

SAE Header Placeholder

AEROSPACE

STANDARD

AS5506/4
VERSION

0.5.0

Revised September 28, 2019

Superseding Version 0.4.0

Architecture Analysis & Design Language (AADL)

Annex F: AADL Annex for the FACETM Technical Standard Edition 3.0

RATIONALE
This annex is intended to provide guidelines for the integrated use of Architecture Analysis & Design Language (AADL) and
Future Airborne Capability Environment (FACE) Technical Standard data specifications and components. The FACE
Technical Standard Edition 3.0 provides a data modeling specification for software components and their interconnections,
but does not, for instance provide mechanisms for describing component behavior or timing properties. This document
provides guidance for translating a FACE Standard Edition 3.0 Data Architecture XMI model into AADL so that models of
FACE components can be integrated in a standard way into AADL specifications that support AADL analysis and code
generation. For example, behavior and timing properties can be added to the resulting model and analyzed using AADL
analysis tools.

http://www.sae.org/technical/standards/PRODCODE

SAE INTERNATIONAL NAME Page 2 of 33

Copyright 2018 Adventium Labs.

TABLE OF CONTENTS

AADL ANNEX FOR THE FACE™ TECHNICAL STANDARD, EDITION 3.0 ... 7

ANNEX F.1 SCOPE .. 7
ANNEX F.2 BACKGROUND AND ASSUMPTIONS .. 7
ANNEX F.3 REFERENCE EXAMPLE ... 10
ANNEX F.4 PACKAGING ... 10
ANNEX F.5 DATA MODEL .. 11
ANNEX F.6 DATA MODEL VIEWS .. 12
ANNEX F.7 UOP MODEL ... 14
ANNEX F.8 TSS ... 17
ANNEX F.9 ROUTING... 19
ANNEX F.10 IOSS ... 21
ANNEX F.11 FACE HEALTH MONITORING AND FAULT MANAGEMENT (HMFM) .. 23
ANNEX F.12 FACE PROFILES ... 23
ANNEX F.13 FACE LIFECYCLE MANAGEMENT ... 23
ANNEX F.14 FACE ARTIFACT PARSING GUIDE .. 23
ANNEX F.15 FACE PROPERTY SET .. 23
ANNEX F.16 COMMENTARY ON THE AADL RUNTIME SERVICES .. 24
ANNEX F.17 BALSA IN AADL .. 24

Figure 1 Architecture Segments Example. (Extracted from FACE Technical Standard Edition 3.0 Section 2.4) 7
Figure 2 Data Architecture (extracted from FACE Technical Standard Edition 3.0 Section 3.9) ... 8
Figure 3: BALSA FACE Integration Model Expressed in AADL ... 10
Figure 4 FACE UoP Metamodel Extracted from the FACE Technical Standard Edition 3.0 Section J.2.6 14
Figure 5: Example UoP (ADSB.impl) Shown Inside a Process (ADSB.linux) .. 14
Figure 6 FACE UoP Connections, extracted from the FACE Technical Standard Edition 3.0 Section J.2.6 16
Figure 7 BALSA AADL Model with Abstract TSS Components .. 18
Figure 8 BALSA AADL Model with Different Concrete TSS Components .. 18
Figure 9 FACE Integration Package, extracted from the FACE Technical Standard Edition 3.0 Section J.2.7 20
Figure 10 FACE Integration Transport Package, extracted from the FACE Technical Standard Edition 3.0 Section J.2.7 . 21
Figure 11 IOSS Example Diagram .. 22
Figure 12 Notional Combined use of AADL Runtime Services and a FACE TSS Library .. 24

SAE INTERNATIONAL NAME Page 3 of 33

Copyright 2018 Adventium Labs.

FOREWARD

(1) The Architecture Analysis & Design Language (AADL) standard and its annexes are prepared and updated by the
SAE Avionics Systems Division (ASD) Embedded Computing Systems Committee (AS-2) Architecture Description
Language (AS-2C) subcommittee.

(2) This AADL standard annex is intended to help component vendors and system integrators using the (Future Airborne
Capability Environment) FACE Technical Standard Edition 3.01. FACE Technical Standard Edition 3.0 provides a
data modeling architecture but does not provide mechanisms for describing component behavior or timing properties.
This document provides guidance for translating a FACE Standard Edition 3.0 Data Architecture XMI model into
AADL so that models of FACE components can be integrated in a standard way into AADL specifications that support
AADL analysis and code generation2. For example, behavior and timing properties can be added to the resulting
model and analyzed using AADL analysis tools.

(3) See section J.6 of the FACE Technical Standard Edition 3.0 for Object Constraint Language specifications for the
Data Architecture.

1 Unless explicitly noted, all references to the FACE Technical Standard in this document refer to Edition 3.0.
2 The FACE Technical Standard Edition 3.0 provides a data architecture metamodel in an EMOF in section J.5.

SAE INTERNATIONAL NAME Page 4 of 33

Copyright 2018 Adventium Labs.

INTRODUCTION

(4) The SAE Architecture Analysis & Design Language (referred to in this document as AADL) is a textual and graphical

language used to design and analyze the software and hardware architecture of performance-critical real-time
systems. These are systems whose operation strongly depends on meeting non-functional system requirements
such as reliability, availability, timing, responsiveness, throughput, safety, and security. AADL is used to describe the
structure of such systems as an assembly of software components mapped onto an execution platform. It can be
used to describe functional interfaces to components (such as data inputs and outputs) and performance-critical
aspects of components (such as timing). AADL can also be used to describe how components interact, such as how
data inputs and outputs are connected or how application software components are allocated to execution platform
components. The language can also be used to describe the dynamic behavior of the runtime architecture by
providing support to model operational modes and mode transitions. The language is designed to be extensible to
accommodate analyses of the runtime architectures that the core language does not completely support. Extensions
can take the form of new properties and analysis specific notations that can be associated with components and are
standardized themselves.

(5) AADL was developed to meet the special needs of performance-critical real-time systems, including embedded real-
time systems such as avionics, automotive electronics, or robotics systems. The language can describe important
performance-critical aspects such as timing requirements, fault and error behaviors, time and space partitioning, and
safety and certification properties. Such a description allows a system designer to perform analyses of the composed
components and systems such as system schedulability, sizing analysis, and safety analysis. From these analyses,
the designer can evaluate architectural tradeoffs and changes.

(6) AADL supports analysis of cross cutting impact of change in the architecture along multiple analysis dimensions in a
consistent manner. Consistency is achieved through automatic generation of analysis models from the annotated
architecture model. AADL is designed to be used with generation tools that support the automatic generation of the
source code needed to integrate the system components and build a system executive from validated models. This
architecture-centric approach to model-based engineering permits incremental validation and verification of system
models against requirements and implementations against systems models throughout the development lifecycle.

(7) This document contains the AADL Annex for the FACE Technical Standard Edition 3.0, which guides users in writing
or generating AADL models that describe components developed in accordance with the FACE Technical Standard.

SAE INTERNATIONAL NAME Page 5 of 33

Copyright 2018 Adventium Labs.

INFORMATION AND FEEDBACK

(8) The website at http://www.aadl.info is an information source regarding the SAE AADL standard. It makes available

papers on AADL, its benefits, and its use. Also available are papers on MetaH, the technology that demonstrated the
practicality of a model-based system engineering approach based on architecture description languages for
embedded real-time systems.

(9) The website provides links to three SAE AADL related discussion forums:

 The SAE AADL User Forum to ask questions and share experiences about modeling with SAE AADL,

 The AADL Toolset User Forum to ask questions and share experiences with the Open Source AADL Tool
Environment, (OSATE) and

 The SAE Standard Document Corrections & Improvements Forum that records errata, corrections, and
improvements to the current release of the SAE AADL standard.

(10) The website provides information and a download site for the Open Source AADL Tool Environment. It also provides
links to other resources regarding the AADL standard and its use.

(11) Questions and inquiries regarding working versions of annexes and future versions of the standard can be addressed
to info@aadl.info.

(12) Informal comments on this standard may be sent via e-mail to errata@aadl.info. If appropriate, the defect correction
procedure will be initiated. Comments should use the following format:

 !topic Title summarizing comment

 !reference AADL-ss.ss(pp)

 !from Author Name yy-mm-dd

 !keywords keywords related to topic

 !discussion

 text of discussion

(13) where ss.ss is the section, clause or subclause number, pp is the paragraph or line number where applicable, and
yy-mm-dd is the date the comment was sent. The date is optional, as is the !keywords line.

(14) Multiple comments per e-mail message are acceptable. Please use a descriptive “Subject” in your e-mail message.

(15) When correcting typographical errors or making minor wording suggestions, please put the correction directly as the
topic of the comment; use square brackets [] to indicate text to be omitted and curly braces { } to indicate text to be
added, and provide enough context to make the nature of the suggestion self-evident or put additional information in
the body of the comment, for example:

 !topic [c]{C}haracter

 !topic it[']s meaning is not defined

SAE INTERNATIONAL NAME Page 6 of 33

Copyright 2018 Adventium Labs.

SAE INTERNATIONAL NAME Page 7 of 33

Copyright 2018 Adventium Labs.

AADL Annex for the FACE™ Technical Standard, Edition 3.0
Version 0.5.0, 2018-09-27

Typography Conventions

Regular Text
AADL Keyword

FACE Keyword Introduction

FACE Keyword

Annex F.1 Scope

 This annex supports the modeling, analysis, and integration of FACE artifacts in AADL. It gives AADL style guidelines
and an AADL property set to provide a common approach to using AADL to express architectures that include FACE
components. Using common properties and component representations in AADL makes AADL models of FACE
components portable and reusable and increases the utility of tools that operate on such AADL models.

 This document provides a mapping for FACE Technical Standard Edition 3.0 and AADL 2.2.

 This annex includes a FACE property set to be used for common representation of FACE aligned components in
AADL models. This document is organized as follows:

 Annex F.2 introduces the FACE Technical Standard and its terminology.

 Annex F.3 introduces the reference model used for examples in this annex.

 Annex F.4 provides recommendations for AADL packaging of models of FACE aligned components.

 Annex F.5 through Annex F.13 provide mappings of FACE Technical Standard elements to AADL.

 Annex F.14 provides recommendations for parsing FACE data model files.

 Annex F.15 provides the AADL property set for models of FACE aligned components.

 Annex F.16 provides guidance on the relationship between the FACE Technical Standard and the AADL runtime
services.

 Annex F.17 provides an example of FACE aligned components translated to AADL.

Annex F.2 Background and Assumptions
 The FACE Technical Standard provides a framework for data architecture that enables service and application

portability across platforms by requiring conformance to the FACE Technical Standard’s data modeling and software
requirements.

Figure 1 Architecture Segments Example. (Extracted from FACE Technical Standard Edition 3.0 Section 2.4)

SAE INTERNATIONAL NAME Page 8 of 33

Copyright 2018 Adventium Labs.

 As illustrated in Figure 1, the FACE Technical Standard is divided into layers. Individual applications or services
that reside in one of these layers are called Units of Portability (UoPs3). UoPs in the Portable Components
Segment (PCS) and the Platform Specific Services Segment (PSSS) communicate with one another using a
Transport Services Segment (TSS) library. The PCS contains general-purpose applications, while the PSSS
isolates UoPs that interact with devices through the I/O Services Segment (IOSS). The TSS is an abstract
grouping of components (including libraries) that provide data exchange related functionality.

 Communication between UoPs is accomplished using parameters dictated by views. Views are constructed from
a FACE data model using queries.

 In a system built from FACE conformant software, a data architecture is composed by the system integrator using
data models associated with each UoP in the system.
i) Systems are not required to consist only of FACE conformant software. The FACE Technical Standard

describes conformance criteria for individual components, not for the entire system.

 The fields that make up each inter-UoP message are taken from the data model. Each field in each message is
associated with a hierarchy of data model elements. This means two UoPs that do not need to use precisely the
same data representation (e.g., metric or imperial) to communicate with one another, as long as the data
representations share a common ancestor.
i) For further information about the FACE Data Architecture, see section 2.3 of the FACE Technical Standard.

 The FACE Technical Standard data architecture is divided into three layers: The Data Model, the UoP Model, and
the Integration Model (see Figure 2). This document provides guidance for all three layers.

Figure 2 Data Architecture (extracted from FACE Technical Standard Edition 3.0 Section 3.9)

 The FACE Technical Standard data model provides a realization hierarchy for multiple levels of data description
(conceptual, logical, and platform). Most AADL analyses do not require that multiple levels of the FACE Technical
Standard data model are mapped to AADL.

 All communication between FACE UoPs that reside in the PCS or PSSS layers is conducted via the TSS interface
according to Views defined in the Data Model (as shown in the top and right of Figure 1).

 In addition to its data modeling approach to interoperability of UoPs, the FACE Technical Standard also provides
operating system interface specifications and I/O device interface specifications (see sections 3.2 and 3.4 of the
FACE Technical Standard). I/O device access is represented in the FACE IOSS (I/O Service Segment). The operating
system interface is represented in the FACE OSS (Operating System Segment). See the left and bottom of Figure 1.

 The terms specific to the FACE Technical Standard used in this annex are defined below:

 FACE (Future Airborne Capability Environment): A government-industry software standard and business
strategy for acquisition of affordable software systems that promotes innovation and rapid integration of portable
capabilities across global defense programs. The FACE Standard also provides a data modeling language used
to describe component interfaces.

3 The FACE Technical Standard defines two equivalent terms, Unit of Portability (UoP) and Unit of Conformance
(UoC). This document uses the former, as FACE conformance is not in the scope of this annex.

SAE INTERNATIONAL NAME Page 9 of 33

Copyright 2018 Adventium Labs.

 FACE Conformance: A software component (Unit of Conformance (UoC)) is certified as FACE conformant when
it has successfully been through an independent verification and certification process, which is defined by the
FACE Conformance Program. This includes technical verification by a designated Verification Authority (VA)
subsequent certification by the FACE Certification Authority (CA), and registration in the FACE Library. This
certification represents that the software UoC meets the requirements of the FACE Technical Standard, which
was designed to facilitate software portability. A FACE conformant data architecture is a .face file that adheres to

the FACE Technical Standard Edition 3.0 metamodel. See section 1.5 of the FACE Technical Standard for more
information.

 Data Architecture Model: The whole of Figure 2 describes the contents of the data architecture model.
i) Each system of integrated FACE conformant UoPs will ultimately have one data model, likely created from

multiple input data models.

 Data Model: A set of conceptual, logical, and platform entities used as the basis for view definition. Each
platform entity refines a logical entity, and each logical entity refines a conceptual entity. See top of Figure 2.
i) Example: “Temperature” is conceptual, “Degrees Celsius” is logical, and “32bit unsigned integer” is platform.

 Domain Specific Data Model (DSDM): A data model with entities created or refined to address the needs of a
particular application or problem space.

 UoP Model: A description of the UoPs in a given system of FACE conformant components and their associated
views and connections. See middle of Figure 2.
i) The connections described in the UoP model do not describe inter-UoP communication. They provide only

the UoP’s expectations of the type of connection it will have when integrated (e.g., sampling).
ii) An integrator will combine multiple UoP models (one for each integrated UoP) into their integrated UoP

model.
iii) This term is not equivalent to “USM,” which is defined later in this section.

 Integration Model: A model describing the composition of FACE UoPs in a system and the inter-UoP message
routing in the TSS. See bottom of Figure 2.

 View: A FACE view is documentation of a Transport Service (TS) API data parameter that can be passed
through the TSS via the TS interface. A view is composed of elements of a data model and is described by a
query.
i) Example: A view “status” might include altitude, airspeed, and ground speed.
ii) Views are nominally defined in the platform layer of the Data Model.
iii) Query: A FACE query is an SQL-like expression describing features of the FACE data model to use in a

view.
iv) Template: A FACE template is used to specify the presentation of data in a platform view. Table 5 provides

an example of a template.

 UoC (Unit of Conformance): A DSDM or a software component designed to meet the requirements for an
individual FACE segment. UoCs must be verified as conformant to the FACE Technical Standard to be certified.
i) All FACE components in the PCS, TSS, PSSS, and IOSS are UoCs.
ii) UoC and UoP are equivalent terms.
iii) See section 2.8 of the FACE Technical Standard for more information.

 UoP (Unit of Portability): Also called Unit of Conformance (UoC). Use of the term Unit of Portability
highlights the portable and reusable attributes of a software component or Domain Specific Data Model (DSDM)
developed to the FACE Technical Standard.
i) Each UoP may have an associated UoP Supplied Model (USM) providing its data model definition and UoP

Model definition.

 TSS (Transport Services Segment): A TSS is responsible for exchanging data between UoPs. A TSS is also
responsible for mediating data between UoPs and other data exchange functions.
i) For example, a TSS might translate a “status” parameter to a “heartbeat” parameter with the same fields but

different units (perhaps meters instead of feet).
ii) The TSS is often shown as a signal entity in diagrams illustrating systems of FACE conformant software

(such as Figure 1) however there is no restriction limiting a system to a single TSS.

 FACE Shared Data Model: An instance of a data model whose purpose is to define commonly used items and
to serve as a basis for all other data models.
i) The FACE shared data model provides common concepts such as temperature.

 USM (UoP Supplied Model): A data model provided by a software supplier that documents the data exchanged
by a UoP via the TS interface. An integrated system may incorporate many USMs.

i) The USM is provided as a .face file with each UoP.

 Integrated Data Model: The integrator of a system using FACE conformance components combines FACE
USMs to create an integrated data model for the system.

 FACE UoP Vendor: A UoP vendor creates the software and USM associated with a UoP. The USM is delivered
with the UoP software.

SAE INTERNATIONAL NAME Page 10 of 33

Copyright 2018 Adventium Labs.

 Integrator of FACE Conformance Components: The integrator of a system using FACE conformance
components is a stakeholder responsible for resolving USMs from FACE UoP vendors to create the integrated
data model and for configuring a TSS that routes data between UoPs.

 FACE UUID: Every element in the data model has a unique identifier created using the UUID standard.
i) UUIDs allow the Integrator of FACE Conformant Components to integrate USMs from multiple vendors

without ambiguity. For example, use of UUIDs mitigates the risks of two FACE UoP vendors using the same
human-readable name for different components; as each component will have a unique UUID, ambiguity in
the human-readable names can be resolved through inspection of the UUIDs.

 UoPInstance: A UoPInstance is a configuration item describing a UoP’s role(s) in a given system configuration
as described by the integration model. A single UoP may have multiple instances in a system.

 UoPConnection: A UoPConnection describes the UoP’s assumptions about its connection.
i) A UoPConnection does not identify the sender or receiver on the other end of the connection (See Figure

10).
ii) There are several implementations of UoPConnection, all of which are enumerated in section Annex F.7.

 UoPEndPoint: A UoPEndPoint describes the routing configuration associated with a single UoPConnection
(See Figure 10).

Annex F.3 Reference Example
 This annex uses the FACE Basic Avionics Lightweight Source Archetype (BALSA) example as a point of reference.

BALSA source code and FACE models are available to members of The Open Group FACE Consortium.

 Understanding of BALSA is not required to use this annex.

Figure 3: BALSA FACE Integration Model Expressed in AADL

Annex F.4 Packaging
 This annex does not provide specific packaging requirements. However, AADL modelers are encouraged to create

separate packages for different components of the FACE data model.

 One package for the converted FACE data model described with AADL data and data implementations

 One or more packages for FACE UoPs expressed as thread groups.

 One package for each integration model

 The USMs for each UoP will typically contribute both to the data model package and to the UoP package(s).

 Example

File Description Notes
data_model.aadl data and data

implementations

corresponding to FACE entities
and views

SAE INTERNATIONAL NAME Page 11 of 33

Copyright 2018 Adventium Labs.

IOSS.aadl thread groups for IOSS

UoPs

OSS.aadl components for the OSS This document does not dictate translation
guidelines for the Operating System Segment

PSSS.aadl thread groups for PSSS

UoPs

PCS.aadl thread groups for PCS

UoPs

TSS.aadl abstract defining a TSS

integration_model.aadl system and system

implementation for a

system including FACE
conformant components.

connections and flows

between components.

Optionally includes time and space partitioning

via process and virtual processor in
accordance with the integrator’s architectural
approach

Table 1 Suggested AADL Packaging

Annex F.5 Data Model
 The data model (top of Figure 2) describes data relevant to a system using FACE conformant components.

 The system integrator uses the FACE Shared Data Model and USMs provided by UoP vendors to construct a
data model.

 UoP vendors use or extend the shared data model. This means that different UoPs will share an ontological
heredity between their views, easing the path to translating from one to the other.

 Each entity in the data model is modeled in AADL as a data.

 Modeling the realization hierarchy of data model entities is not necessary for most AADL analysis.

 Hierarchical entity representation is modeled using inheritance via the AADL extends keyword, as shown in

Table 2 and Table 3.

FACE Entity AADL Entity Properties

Data Model package (optional)

Data Model Entity
Composition:
Conceptual

data FACE::UUID

 FACE::Realization_Tier => conceptual

Data Model Entity
Composition: Logical

data or data
extends…

 FACE::UUID

 FACE::Realization_Tier => logical

Data Model Entity:
Platform

data or data
extends…

 FACE::UUID

 FACE::Realization_Tier => platform

 Memory_Properties::Data_Size

Table 2 FACE Data Model to AADL Mapping

 Example

Conceptual data aircraftID_Conceptual

 properties

 FACE::UUID => "{0540db6f-67fd-430c-bc72-84126daa00cc }";

 FACE::Realization_Tier => conceptual;

end aircraftID_Conceptual;

Logical data aircraftID_Logical extends aircraftID_Conceptual

 properties

 FACE::UUID => "{ cf4c9604-f2a4-4e38-8937-05fd08e00f0a}";

 FACE::Realization_Tier => logical;

end AircraftID_Logical;

Platform data AircraftID_Platform extends aircraftID_logical

 properties

 FACE::UUID => "{5e4a3697-13b0-4c35-ba56-29f61f4cdc35}";

 FACE::Realization_Tier => platform;

end AircraftID_Platform;

Table 3 AADL Examples for the FACE Data Model

SAE INTERNATIONAL NAME Page 12 of 33

Copyright 2018 Adventium Labs.

Annex F.6 Data Model Views
 A FACE Conceptual View is either a Conceptual Query or a Conceptual Composite Query.

 Each conceptual query is modeled as a single data.

 Each conceptual composite query is modeled as a data and a data implementation.

 The subcomponents of the data implementation are determined by the query compositions of the

conceptual composite query.

 A FACE Logical View is either a Logical Query or a Logical Composite Query.

 Each logical query is modeled as a single data. If the logical query realizes a conceptual query, that

realization is modeled as a data extension.

 Each Logical Composite Query is modeled as a data and a data implementation. If the logical

composite query realizes a conceptual composite query, that realization is modeled as a data extension.

 The subcomponents of the data implementation are determined by the Query Compositions of the logical

composite query.

 A FACE Platform View is composed of data from the platform tier of the FACE data model.

 A Platform View is either a Platform Template or a Platform Composite Template. A platform template has a
bound query.

 A Platform View’s contents are defined by a query, the semantics of which are provided in section J.3 of the
FACE Technical Standard.

 A Platform View’s organization is defined by a platform template, the semantics of which are provided in
section J.4 of the FACE Technical Standard.

 Each platform template is modeled as a single data. If the platform template’s bound query realizes a

logical query, that realization is modeled as a data extension.

 Each platform composite template is modeled as a data and a data implementation. If the platform

composite template realizes a logical composite query, that realization is modeled as a data extension.

 The subcomponents of the data implementation are determined by the Template Compositions of the

platform composite template.

 The Is_Union property on an AADL data translated from a FACE Data Model query or template indicates

whether the fields in the query or template are to be interpreted as a C-style union (if true) or a C-style struct (if
false).

FACE Entity AADL Entity Properties

Conceptual
Query

data FACE::UUID

 FACE::Realization_Tier => Conceptual

Conceptual
Composite
Query

data and data

implementation
 FACE::UUID

 FACE::Realization_Tier => Conceptual

 FACE::Is_Union

Conceptual
Query
Composition

data subcomponent FACE::UUID

Logical Query data or data
extends…

 FACE::UUID

 FACE::Realization_Tier => logical

Logical
Composite
Query

data or data
extends… and data

implementation

 FACE::UUID

 FACE::Realization_Tier => logical

 FACE::Is_Union

Logical Query
Composition

data subcomponent FACE::UUID

Platform
Template

data or data
extends…

 FACE::UUID

 FACE::Realization_Tier => platform

Platform
Composite
Query

data or data
extends… and data

implementation

 FACE::UUID

 FACE::Realization_Tier => platform

Platform
Composite
Template

data subcomponent FACE::UUID

 FACE::Is_Union

Table 4 Query and Template to AADL Mapping

SAE INTERNATIONAL NAME Page 13 of 33

Copyright 2018 Adventium Labs.

 Table 5 shows an example template and query. The example in Table 6 shows the AADL data and data

implementation for the composite template in Table 5.

 Note that in Table 6 the FACE::UUID property on Template_view_from_Aircraft_Config_Platform

refers to the UUID of the template and the FACE::UUID properties of the subcomponents of

Template_view_from_Aircraft_Config_Platform refer to the individual features of the Aircraft entity.

Aircraft
Entity

<element

xsi:type="platform:Entity" xmi:id="_hwTh4EM1EeiBlKadCQCZ8Q"

name="Aircraft" description="Aircraft Enitity"

realizes="_hwTazkM1EeiBlKadCQCZ8Q">

<composition xmi:id="_hwTh4UM1EeiBlKadCQCZ8Q" rolename="tailNumber"

description="tailNumber" type="_hwTh1kM1EeiBlKadCQCZ8Q"

realizes="_hwTaz0M1EeiBlKadCQCZ8Q" precision="1000.0"/>

<composition xmi:id="_hwTh4kM1EeiBlKadCQCZ8Q" rolename="aircraftID"

description="aircraftID" type="_hwTh10M1EeiBlKadCQCZ8Q"

realizes="_hwTa0EM1EeiBlKadCQCZ8Q" precision="1000.0"/>

</element>

Aircraft
Config
Template

<element

xsi:type="platform:Template" xmi:id="_hwTh8EM1EeiBlKadCQCZ8Q"

name="Template_view_from_Aircraft_Config"

specification="main (a) {a.aircraftID;a.tailNumber;} "
boundQuery="_hwTh70M1EeiBlKadCQCZ8Q"

/>

Aircraft
Config
Query

<element

xsi:type="platform:Query" xmi:id="_hwTh70M1EeiBlKadCQCZ8Q"

name="Aircraft_Config" description="View for message from Aircraft_Config

to TSS port" specification="select a.aircraftID, a.tailNumber
from

Aircraft as a"

/>

Table 5 Example Platform Entity, Template, and Query

Platform
View

 data Template_view_from_Aircraft_Config_Platform
 properties

 FACE::Realization_Tier => platform;

 FACE::UUID => "_hwTh8EM1EeiBlKadCQCZ8Q";

end Template_view_from_Aircraft_Config_Platform;

data implementation Template_view_from_Aircraft_Config_Platform.impl

 subcomponents

 aircraftID: data AircraftID_Platform {

 FACE::UUID => "{hwTh4kM1EeiBlKadCQCZ8Q}";

 };

 tailNumber: data Tail_Number_Platform {

 FACE::UUID => "{hwTh4UM1EeiBlKadCQCZ8Q}";

 };

end Template_view_from_Aircraft_Config_Platform.impl;

Table 6 Example Platform View in AADL

SAE INTERNATIONAL NAME Page 14 of 33

Copyright 2018 Adventium Labs.

Annex F.7 UoP Model

Figure 4 FACE UoP Metamodel Extracted from the FACE Technical Standard Edition 3.0 Section J.2.6

 The scope of the FACE data architecture is restricted to the data exchanged by software. FACE Technical Standard
3.0 does not describe the physical attributes of a system (e.g., binding software to hardware).

 All AADL components translated from FACE UoPs use the FACE::UUID property to denote the UUID of the FACE

component from which they were derived.

 Use of this UUID enables traceability back to the original FACE USM from which the AADL component was
generated.

 A collection of UoP instances is modeled as a system implementation.

 The UoP model does not include routing of connections between UoPs. Connection routing is described in the FACE
integration model.

Figure 5: Example UoP (ADSB.impl) Shown Inside a Process (ADSB.linux)

 Each FACE UoP is modeled in AADL as a thread group.

 The FACE Technical Standard does not place requirements on threading of UoPs, however the standard does
provide for multiple UoPs in a single ARINC653 partition or POSIX process. In Figure 5 a single UoP is shown

inside a process. However, a single process could support multiple UoPs. 4

 Each UoP is modeled as a thread group.

4 This annex translates FACE elements to AADL components that can be used in conjunction with a processor and/or
virtual processor, thereby permitting but not requiring adherence to ARINC653 or POSIX AADL modeling norms.

SAE INTERNATIONAL NAME Page 15 of 33

Copyright 2018 Adventium Labs.

 A single-threaded UoP is modeled as a thread group containing a single thread. In Figure 5 the UoP is

called ADSB. It is of type ADSB.impl and is from the PSSS package.

 A multi-threaded UoP is modeled as a thread group containing multiple threads. The FACE Technical

Standard metamodel for UoPs is shown in Figure 4.

 UoPConnections on the UoP are modeled as ports on the UoP thread group. In Figure 5 the

UoPConnection is called ATC_Data_In.

 AADL ports on UoPs reference views via type constraints.

i) For example, a UoPConnection sending or receiving Template_view_from_Aircraft_Config messages (as

defined by the FACE template in Table 5) would use an AADL port of type

Template_view_from_Aircraft_Config as defined by the AADL data in Table 6.

 The FACE Technical Standard provides several refinements of UoPConnection as shown in Figure 6. The
following are the available concrete (non-abstract) connection types:

i) A ClientServerConnection is modeled as an in event data port and an out event data port.5

ii) A QueuingConnection is modeled as an in event data port or an out event data port.

iii) SingleInstanceMessageConnection is modeled as an in data port or an out data port.

FACE Entity AADL Entity Properties Notes

UoP thread group FACE::UUID

 FACE::Segment =>

PSSS or PCS

 FACE::Profile

Can also be modeled as an abstract, but

thread group is preferred.

UoPInstance thread group

as
subcomponent

 When a thread group is used as

subcomponent of a process, it is acting as

a UoPInstance.

UoPConnection See concrete
implementations

 FACE::UUID

 Communication_Pro

perties::Input_Ra

te and

Communication_Pro

perties::Output_R

ate

The rate of a UoPConnection is specified as
a period in seconds in the FACE UoP
Model, requiring inversion for representation
in AADL.

ClientServerConn
ection (extends
UoPConnection)

An in event

data port with

data type from

associated view

and an out
event data

port with data

type from

associated view

 Associated views (requestType and

responseType) are associated with ports

depending on the ClientServerRole
property of the connection. If the
connection’s role is Client, then the
requestType view is associated with the

out port and the responseType view is

associated with the in port. The

association is reversed for
ClientServerConnections with role Server.

QueuingConnecti
on (extends
UoPConnection)

in or out event

data port with

data type from

associated view.
The direction of
the port is
determined by the
MessageExchan
geType property.
InboundMessage
corresponds to an

in port,

Communication_Propertie

s::Queue_Size set from the

queuing connection’s depth

5 Although similar to the client server paradigm in intent, AADL subprogram calls are not appropriate representations

of client server connections as subprogram calls imply a remote method invocation paradigm that is not universally

consistent with the client server paradigm.

SAE INTERNATIONAL NAME Page 16 of 33

Copyright 2018 Adventium Labs.

OutboundMessa
ge corresponds to

an out port.

SingleInstanceMe
ssageConnection
(extends
UoPConnection)

in or out data

port with data

type from

associated view.
The direction of
the port is
determined by the
MessageExchan
geType property.
InboundMessage
corresponds to an

in port,

OutboundMessa
ge corresponds to

an out port.

Table 7 UoP to AADL Mapping

Figure 6 FACE UoP Connections, extracted from the FACE Technical Standard Edition 3.0 Section J.2.6

 Each thread defined in the UoP is modeled as an AADL thread.

 The period property of the thread is assumed to be in seconds and is represented AADL using the Period

property.

 The relativePriority property of the thread is assumed to imply higher numerical value means higher priority and

is translated directly to the AADL Priority property.

 The timeCapacity property of the thread is assumed to be in seconds and is represented in AADL using the

Compute_Execution_Time property.

i) Compute_Execution_Time is a ranged property. Both the minimum and maximum values of

Compute_Execution_Time should be set to the value of timeCapacity.

 thread properties not specified by this annex are left to the AADL modeler.

 The example shown in Table 8 shows a thread group corresponding to an AirConfig UoP.

SAE INTERNATIONAL NAME Page 17 of 33

Copyright 2018 Adventium Labs.

AirConfig
UoP in a
FACE
Data
Model

<element

xsi:type="uop:PlatformSpecificComponent"

xmi:id="_hwTh_0M1EeiBlKadCQCZ8Q" name="AirConfig" description="Unit of

Portability in PSSS." faceProfile="SafetyBase">

<thread xmi:id="_hwTiAEM1EeiBlKadCQCZ8Q" period="1.0" timeCapacity="0.1"

relativePriority="3"/>

<memoryRequirements xmi:id="_hwTiAUM1EeiBlKadCQCZ8Q" heapStackMin="1000"

heapStackMax="100000" dataMax="100000" bssMax="100"/>

<connection xsi:type="uop:SingleInstanceMessageConnection"

xmi:id="_hwTiAkM1EeiBlKadCQCZ8Q" name="AirConfig_to_ATC_port"

description="Interface sending Aircraft_Config data to ATC"

period="10.0" synchronizationStyle="NonBlocking"

messageType="_hwTh8EM1EeiBlKadCQCZ8Q"

messageExchangeType="OutboundMessage"/>

</element>

AirConfig
UoP in
AADL

--Unit of Portability in PSSS.

thread group AirConfig

 features

 --Interface sending Aircraft_Config data to ATC

 AirConfig_to_ATC_port: out data port

balsa_data_model::Template_view_from_Aircraft_Config_Platform {

 Output_Rate => [Value_Range => 0.1 .. 0.1; Rate_Unit => PerSecond;];

 FACE::UUID => "_hwTiAkM1EeiBlKadCQCZ8Q";

 };

 properties

 FACE::Profile => safety;

 FACE::Segment => PSSS;

 FACE::UUID => "_hwTh_0M1EeiBlKadCQCZ8Q";

 end AirConfig;

 thread group implementation AirConfig.impl
 subcomponents

 thread0: thread {

 Compute_Execution_Time => 1 sec .. 1 sec;

 Period => 1 sec;

 Priority => 3;

 };
end AirConfig.impl;

Table 8 Example UoP in AADL

Annex F.8 TSS
 A TSS is modeled in AADL as an abstract that can be refined to accommodate varying levels of model detail.

SAE INTERNATIONAL NAME Page 18 of 33

Copyright 2018 Adventium Labs.

 The implementation details for a TSS library are not strongly specified by the FACE Technical Standard and may
vary from system to system.
i) For example, the FACE Technical Standard dictates the semantics of a Send_Message TSS function call but

does not specify which thread(s) service the call or whether execution of the function requires network
access. Such information is available to the system implementers, but the FACE Technical Standard does not
provide enough information to specify the appropriate AADL translation a priori.

ii) Details about specific TSS implementations should be incorporated into an AADL model as refinements of an

abstract TSS.

 The FACE Technical Standard’s integration model provides optional guidelines for configuration of a TSS,
discussed in section Annex F.9.

 Figure 7 shows an example system implementation using only abstracts for the TSS. Figure 8 shows an

extended version of Figure 7 with each abstract TSS extended as a different type (from the top down,

thread group, process, and system). The AADL source for these models is in Table 17.

FACE Entity AADL Entity Properties

TSS An abstract for each TSS

in the system
 FACE::UUID

 FACE::Segment=>TSS

TSS (added detail) An abstract for each TSS

in the system
implementation, refined as a

virtual bus (for

example)

 FACE::UUID

 FACE::Segment=>TSS

UoP to UoP message route flow through one or

more TSS abstract.

 FACE::UUID

Table 9 TSS to AADL Mapping

Figure 7 BALSA AADL Model with Abstract TSS Components

Figure 8 BALSA AADL Model with Different Concrete TSS Components

SAE INTERNATIONAL NAME Page 19 of 33

Copyright 2018 Adventium Labs.

Annex F.9 Routing
 The FACE Technical Standard specifies, but does not require, a formal model for the configuration of the TSS called

the Integration Model. The integration model includes the routing of data between UoPs. Whether or not they opt
to use the FACE Technical Standard integration model, system integrators will have to connect UoPs. This annex
provides a standard style for their interconnection.

 This document supports use of the FACE integration model as specified by the FACE Technical Standard.

 This document provides guidance generally applicable to routing configurations.

 The FACE Technical Standard integration metamodel provides mechanisms for describing inter-UoP
communication, including view translation (adapting a data interface parameter from one UoP to another).

 The entities of the FACE Technical Standard integration metamodel are shown in Figure 9 and Figure 10.

 A UoPInstance is a UoP as used in an Integration Model. A single UoP may be used multiple times in a FACE

integration model. The UoP is modeled as a thread group and thread group implementation(s). When

the UoP is used as a subcomponent, the subcomponent acts as a UoPInstance.

 This annex does not specify an AADL representation of the integration model as a whole.

 For example, suppose a message logging UoP is modeled as a thread group named logger and

implemented as a thread group implementation named logger.impl. If the FACE Integration Model

calls for a UoPInstance named my_logger, an AADL subcomponent of type logger.impl with name

my_logger should be used. This annex does not specify the parent component of a UoPInstance, but an AADL

process is recommended.

 The FACE Technical Standard does not specify organization of UoPs into processes. Multiple UoPs may be modeled

in a single process or in multiple processes.

 A UoP in the UoP model defines its UoPConnections. These UoPConnections are modeled as ports in the

thread group or thread group implementation. When the thread group is used as a subcomponent, its

ports act as UoPEndPoints.

 A UoPEndPoint is a feature of the FACE Technical Standard Integration Model and describes part of the TSS

configuration. Each UoPEndPoint refers to a single UoPConnection that it services (see Figure 10).

 Note that a UoPConnection is translated to an AADL port, not to an AADL connection.

 A UoPEndPoint and a UoPConnection together define an AADL port as used in a UoPInstance in a system

implementation

 AADL ports corresponding to UoPConnections and UoPEndPoints may be organized into feature groups.

 A TSNodeConnection describes the connection from a UoP to the TSS (not to another UoP)

 A TransportChannel is modeled as an AADL virtual bus to which a ViewTransporter is bound. For example, a

FACE Integration Model might configure a view to be transported between UoPs by a ViewTransporter and adapted

between types using a ViewTransformation.

 The example in Table 10 shows UoP data routing through a TSS. Connections go from UoPs to a TSS and flows

describe data going from UoP to UoP through the TSS.

 The integration model alone is insufficient to describe flows that traverse more than two UoPs. The end to end

flow in Table 10 includes information beyond that provided in the integration model; the integration model

describes the three involved UoPs, each with its connection(s) to the others, but does not describe a data flow

through all three.

UoP

Routing

through

TSS

connections

AirConfig_To_TSS: port airConfig_PSSS.airconfig_out -> TSS.airconfig_in;

TSS_To_ATC_Port: port TSS.airconfig_out -> atc_PCS.airconfig_in;

ATC_To_TSS: port atc_PCS.adsb_out -> TSS.adsb_in;

TSS_To_ADSB: port TSS.adsb_out -> ADSB_PSSS.ATC_Data_in;

flows

AirConfig_ETE: end to end flow airconfig_PSSS.AirConfig_Source ->

AirConfig_To_TSS -> TSS.AirConfig_flow -> TSS_To_ATC_Port ->

atc_PCS.airconfig_adsb_flow -> ATC_To_TSS -> TSS.adsb_flow -> TSS_To_ADSB

-> ADSB_PSSS.ATC_Sink;

Table 10 Example UoP Routing through a TSS

SAE INTERNATIONAL NAME Page 20 of 33

Copyright 2018 Adventium Labs.

FACE Entity AADL Entity Properties

Integration Model system implementation FACE::UUID

UoP Instance thread group as
subcomponent

 FACE::UUID

UoPOutputEndPoint port on thread group as
subcomponent

 FACE::UUID

TSNodePort port on a TSS abstract FACE::UUID

TSNodeConnection connection FACE::UUID

ViewTransporter abstract FACE::UUID

TransportChannel virtual bus with view

transporter abstract or

view transporter

refinement bound to it

 FACE::UUID

ViewFilter,
ViewTransformation,
ViewAggregation,
ViewSource, ViewSink

abstract to be refined on

an implementation-specific
basis

 FACE::UUID

Table 11 Integration Model to AADL Mapping

Figure 9 FACE Integration Package, extracted from the FACE Technical Standard Edition 3.0 Section J.2.7

SAE INTERNATIONAL NAME Page 21 of 33

Copyright 2018 Adventium Labs.

Figure 10 FACE Integration Transport Package, extracted from the FACE Technical Standard Edition 3.0 Section

J.2.7

Annex F.10 IOSS
 The IOSS Layer (bottom of Figure 1) provides an API but does not have a formal exchange model, as IOSS

components are inherently specific to a particular platform.

 IOSS components are modeled in AADL as abstracts.

 A PSSS UoP’s use of IOSS functions is modeled in AADL using subprogram calls.

 The physical component to which the IOSS service provides access is modeled in AADL as a device accessible

via a bus.

i) The FACE Technical Standard does not provide means to describe the device itself.

 The bus used by an IOSS service to communicate with its physical component(s) is modeled in AADL as a bus.

 Table 13 shows an example IOSS AADL model. This example opts to extend the IOSS abstract as a

subprogram called ioss1553lib. Figure 11 shows an AADL graphical model of this example.

FACE Entity AADL Entity Properties

IOSS Service abstract FACE::UUID

 FACE::Profile

 FACE::Segment=>IOSS

IOSS Device device FACE::UUID

IOSS Bus bus FACE::UUID

Table 12 IOSS to AADL Mapping

SAE INTERNATIONAL NAME Page 22 of 33

Copyright 2018 Adventium Labs.

Figure 11 IOSS Example Diagram

Example
IOSS
Implemen
tation

package ioss_example

public

 with FACE;

 bus milstd1553

 end milstd1553;

 abstract ioss1553

 properties

 FACE::Segment => IOSS;

 end ioss1553;

 subprogram ioss1553lib extends ioss1553

 end ioss1553lib;

 thread group examplepsss

 features

 ioss: requires subprogram access ioss1553lib;

 properties

 FACE::Segment => PSSS;

 end examplepsss;

 thread group implementation examplepsss.impl

 end examplepsss.impl;

 process psssprocess

 end psssprocess;

 process implementation psssprocess.impl

 subcomponents

 example: thread group examplepsss;

 ioss: subprogram ioss1553lib;

 connections

 iosscall: subprogram access example.ioss -> ioss;

 end psssprocess.impl;

 device airspeedsensor

 features

 ba: requires bus access milstd1553;

 airout: out data port;

 end airspeedsensor;

SAE INTERNATIONAL NAME Page 23 of 33

Copyright 2018 Adventium Labs.

 system demo

 end demo;

 processor x86

 features

 ba: requires bus access milstd1553;

 end x86;

 system implementation demo.impl

 subcomponents

 x86: processor x86;

 milstd1553: bus milstd1553;

 sensor: device airspeedsensor;

 proc: process psssprocess.impl;

 connections

 conn1: bus access x86.ba -> milstd1553;

 conn2: bus access sensor.ba -> milstd1553;

 properties

 Actual_Connection_Binding=>(reference(x86)) applies to proc;

 end demo.impl;

end ioss_example;

Table 13 Example IOSS AADL Example

Annex F.11 FACE Health Monitoring and Fault Management (HMFM)
 The FACE HMFM API described in section 3.2.2 of the FACE Technical Standard is out of scope for the current

version of this document.

Annex F.12 FACE Profiles
 The FACE Technical Standard provides several operating system profiles describing which operating system calls are

legal for a UoC.

 The available profiles (defined in section 2.7 of the FACE Technical Standard) are Security, Safety-Base, Safety-
Extended, and General Purpose.

 The FACE::Profile property is used to record the profile selected for each component. Appendix A of the

FACE Technical Standard enumerates the legal system calls for each profile.

 The FACE::profile restricts the allowed system calls used by generated code to those allowed in a given profile.

AADL Tools that generate source code should consider the FACE::Profile property when determining how to

generate code.

Annex F.13 FACE Lifecycle Management
 The FACE Lifecycle Management architecture described in section 3.13 of the FACE Technical Standard is out of

scope for the current version of this document

 However the Lifecycle Management APIs, States, and Transitions will likely translate naturally to the AADL
Behavior Annex and the AADL Runtime Services.

 AADL Tools that generate source code should consider the Lifecycle Management functions described in section
3.13 of the FACE Technical Standard when determining how to generate code.

Annex F.14 FACE Artifact Parsing Guide
 The data model, UoP model, and integration model are provided in a standardized Essential Meta-Object Facility

(EMOF) format provided in section J.5 of the FACE Technical Standard.

Annex F.15 FACE Property Set

-- Properties used when modeling FACE concepts in AADL.

property set FACE is

 -- Properties for all elements:

-- The UUID is used to maintain traceability from elements in the FACE model to elements

in the AADL model.

 UUID: aadlstring applies to (all);

SAE INTERNATIONAL NAME Page 24 of 33

Copyright 2018 Adventium Labs.

 -- Properties for data model elements:

Realization_Tier: enumeration (conceptual, logical, platform) applies to (data);

-- For data components that correspond to a composite query or a composite template,

Is_Union indicates if the

-- subcomponents should be considered to form a union or a struct.

 Is_Union: aadlboolean => false applies to (data);

 -- Properties for UoPs:

Profile: enumeration (security, safety_extended, safety, general) applies to (all);

Segment: enumeration (PSSS, PCS, IOSS, OSS, TSS) applies to (all);

end FACE;

Table 14 AADL Property Set for the FACE Technical Standard Edition 3.0

Annex F.16 Commentary on the AADL Runtime Services
 The AADL Runtime Services, defined in section A.9 of the AADL Standard, provide a set of nominal system calls

available to threads. Many of these calls overlap in intent with similar functions defined by the FACE Technical

Standard. For example Send_Output from A.9 (3) of the AADL Standard has similar intent to the Send_Message

function defined in section E.3.2 of the FACE Technical Standard.

 This annex does not dictate a mapping of AADL Runtime service functions to FACE Technical Standard defined
functions.

 This annex does not dictate a mapping of FACE Technical Standard defined functions to AADL Runtime service
functions.

 System implementers using both the AADL Runtime Services and a FACE TSS library are encouraged to
implement the AADL Runtime Services using a FACE TSS library when applicable. An example of such usage is
shown in Figure 12.
i) Thread behaviors defined using the AADL Behavior Annex can reference the AADL Runtime Services, as the

runtime services calls are defined by the AADL Standard. A requirement that AADL behavior specifications
reference FACE TSS functions would place an undue burden on tool vendors.

Figure 12 Notional Combined use of AADL Runtime Services and a FACE TSS Library

Annex F.17 BALSA in AADL

BALSA Portable Component Segment UoP in AADL

--Generated from "balsa.face" at 2018-09-22T15:52:37.043

package balsa_PCS

public

 with balsa_data_model;

 with FACE;

 --Unit of Portability in PCS

 thread group ATCManager

 features

 --Interface receiving message from Air_Config

 ATC_From_AirConfig_Port: in data port

balsa_data_model::Template_view_from_Aircraft_Config_Platform {

 Input_Rate => [Value_Range => 0.1 .. 0.1; Rate_Unit =>

PerSecond;];

 FACE::UUID => "_hwTh_EM1EeiBlKadCQCZ8Q";

 };

 --Interface receiving message from EGI.

SAE INTERNATIONAL NAME Page 25 of 33

Copyright 2018 Adventium Labs.

 ATC_From_EGI_Port: in data port

balsa_data_model::Template_view_from_EGI_Data_Platform {

 Input_Rate => [Value_Range => 0.1 .. 0.1; Rate_Unit =>

PerSecond;];

 FACE::UUID => "_hwTh_UM1EeiBlKadCQCZ8Q";

 };

 --Interface from ATCMAnager sending message to ADSB

 ATC_To_ADSB_Port: out data port

balsa_data_model::Template_view_from_ATC_Data_Platform {

 Output_Rate => [Value_Range => 0.1 .. 0.1; Rate_Unit =>

PerSecond;];

 FACE::UUID => "_hwTh_kM1EeiBlKadCQCZ8Q";

 };

 properties

 FACE::Profile => safety;

 FACE::Segment => PCS;

 FACE::UUID => "_hwTh-UM1EeiBlKadCQCZ8Q";

 end ATCManager;

 thread group implementation ATCManager.impl

 subcomponents

 thread0: thread {

 Compute_Execution_Time => 100000001490 ps .. 100000001490 ps;

 Period => 1 sec;

 Priority => 3;

 };

 end ATCManager.impl;

 process ATCManager_process

 features

 --Interface receiving message from Air_Config

 ATC_From_AirConfig_Port: in data port

balsa_data_model::Template_view_from_Aircraft_Config_Platform {

 Input_Rate => [Value_Range => 0.1 .. 0.1; Rate_Unit =>

PerSecond;];

 FACE::UUID => "_hwTh_EM1EeiBlKadCQCZ8Q";

 };

 --Interface receiving message from EGI.

 ATC_From_EGI_Port: in data port

balsa_data_model::Template_view_from_EGI_Data_Platform {

 Input_Rate => [Value_Range => 0.1 .. 0.1; Rate_Unit =>

PerSecond;];

 FACE::UUID => "_hwTh_UM1EeiBlKadCQCZ8Q";

 };

 --Interface from ATCMAnager sending message to ADSB

 ATC_To_ADSB_Port: out data port

balsa_data_model::Template_view_from_ATC_Data_Platform {

 Output_Rate => [Value_Range => 0.1 .. 0.1; Rate_Unit =>

PerSecond;];

 FACE::UUID => "_hwTh_kM1EeiBlKadCQCZ8Q";

 };

 flows

 ATC_From_AirConfig_Port_sink: flow sink ATC_From_AirConfig_Port;

 ATC_From_EGI_Port_sink: flow sink ATC_From_EGI_Port;

 ATC_To_ADSB_Port_source: flow source ATC_To_ADSB_Port;

 end ATCManager_process;

 process implementation ATCManager_process.impl

 subcomponents

 ATCManager: thread group ATCManager.impl;

 connections

 ATC_From_AirConfig_Port_connection: port ATC_From_AirConfig_Port ->

ATCManager.ATC_From_AirConfig_Port;

SAE INTERNATIONAL NAME Page 26 of 33

Copyright 2018 Adventium Labs.

 ATC_From_EGI_Port_connection: port ATC_From_EGI_Port ->

ATCManager.ATC_From_EGI_Port;

 ATC_To_ADSB_Port_connection: port ATCManager.ATC_To_ADSB_Port ->

ATC_To_ADSB_Port;

 flows

 ATC_From_AirConfig_Port_sink: flow sink ATC_From_AirConfig_Port ->

ATC_From_AirConfig_Port_connection -> ATCManager;

 ATC_From_EGI_Port_sink: flow sink ATC_From_EGI_Port ->

ATC_From_EGI_Port_connection -> ATCManager;

 ATC_To_ADSB_Port_source: flow source ATCManager ->

ATC_To_ADSB_Port_connection -> ATC_To_ADSB_Port;

 end ATCManager_process.impl;

end balsa_PCS;

Table 15 Example BALSA PCS UoPs Modeled in AADL

BALSA Platform Specific Services Segment in AADL

--Generated from "balsa.face" at 2018-09-22T15:52:37.043

package balsa_PSSS

public

 with balsa_data_model;

 with FACE;

 --Unit of Portability in PSSS.

 thread group ADSB

 features

 --Interface receiving message from ATCManager

 ADSB_From_ATCManager_Port: in data port

balsa_data_model::Template_view_from_ATC_Data_Platform {

 Input_Rate => [Value_Range => 0.0 .. 0.0; Rate_Unit =>

PerSecond;];

 FACE::UUID => "_hwTh90M1EeiBlKadCQCZ8Q";

 };

 properties

 FACE::Profile => safety;

 FACE::Segment => PSSS;

 FACE::UUID => "_hwTh9EM1EeiBlKadCQCZ8Q";

 end ADSB;

 thread group implementation ADSB.impl

 subcomponents

 thread0: thread {

 Compute_Execution_Time => 100000001490 ps .. 100000001490 ps;

 Period => 1 sec;

 Priority => 3;

 };

 end ADSB.impl;

 process ADSB_process

 features

 --Interface receiving message from ATCManager

 ADSB_From_ATCManager_Port: in data port

balsa_data_model::Template_view_from_ATC_Data_Platform {

 Input_Rate => [Value_Range => 0.0 .. 0.0; Rate_Unit =>

PerSecond;];

 FACE::UUID => "_hwTh90M1EeiBlKadCQCZ8Q";

 };

 flows

 ADSB_From_ATCManager_Port_sink: flow sink ADSB_From_ATCManager_Port;

 end ADSB_process;

 process implementation ADSB_process.impl

 subcomponents

SAE INTERNATIONAL NAME Page 27 of 33

Copyright 2018 Adventium Labs.

 ADSB: thread group ADSB.impl;

 connections

 ADSB_From_ATCManager_Port_connection: port ADSB_From_ATCManager_Port -

> ADSB.ADSB_From_ATCManager_Port;

 flows

 ADSB_From_ATCManager_Port_sink: flow sink ADSB_From_ATCManager_Port ->

ADSB_From_ATCManager_Port_connection -> ADSB;

 end ADSB_process.impl;

 --Unit of Portability in PSSS.

 thread group AirConfig

 features

 --Interface sending Aircraft_Config data to ATC

 AirConfig_to_ATC_port: out data port

balsa_data_model::Template_view_from_Aircraft_Config_Platform {

 Output_Rate => [Value_Range => 0.1 .. 0.1; Rate_Unit =>

PerSecond;];

 FACE::UUID => "_hwTiAkM1EeiBlKadCQCZ8Q";

 };

 properties

 FACE::Profile => safety;

 FACE::Segment => PSSS;

 FACE::UUID => "_hwTh_0M1EeiBlKadCQCZ8Q";

 end AirConfig;

 thread group implementation AirConfig.impl

 subcomponents

 thread0: thread {

 Compute_Execution_Time => 100000001490 ps .. 100000001490 ps;

 Period => 1 sec;

 Priority => 3;

 };

 end AirConfig.impl;

 process AirConfig_process

 features

 --Interface sending Aircraft_Config data to ATC

 AirConfig_to_ATC_port: out data port

balsa_data_model::Template_view_from_Aircraft_Config_Platform {

 Output_Rate => [Value_Range => 0.1 .. 0.1; Rate_Unit =>

PerSecond;];

 FACE::UUID => "_hwTiAkM1EeiBlKadCQCZ8Q";

 };

 flows

 AirConfig_to_ATC_port_source: flow source AirConfig_to_ATC_port;

 end AirConfig_process;

 process implementation AirConfig_process.impl

 subcomponents

 AirConfig: thread group AirConfig.impl;

 connections

 AirConfig_to_ATC_port_connection: port AirConfig.AirConfig_to_ATC_port

-> AirConfig_to_ATC_port;

 flows

 AirConfig_to_ATC_port_source: flow source AirConfig ->

AirConfig_to_ATC_port_connection -> AirConfig_to_ATC_port;

 end AirConfig_process.impl;

 --Unit of Portability in PSSS.

 thread group EGI

 features

 --Interface sending message from EGI to ATCManager

 EGI_to_ATC_port: out data port

SAE INTERNATIONAL NAME Page 28 of 33

Copyright 2018 Adventium Labs.

balsa_data_model::Template_view_from_EGI_Data_Platform {

 Output_Rate => [Value_Range => 0.1 .. 0.1; Rate_Unit =>

PerSecond;];

 FACE::UUID => "_hwTiBkM1EeiBlKadCQCZ8Q";

 };

 properties

 FACE::Profile => safety;

 FACE::Segment => PSSS;

 FACE::UUID => "_hwTiA0M1EeiBlKadCQCZ8Q";

 end EGI;

 thread group implementation EGI.impl

 subcomponents

 thread0: thread {

 Compute_Execution_Time => 100000001490 ps .. 100000001490 ps;

 Period => 1 sec;

 Priority => 3;

 };

 end EGI.impl;

 process EGI_process

 features

 --Interface sending message from EGI to ATCManager

 EGI_to_ATC_port: out data port

balsa_data_model::Template_view_from_EGI_Data_Platform {

 Output_Rate => [Value_Range => 0.1 .. 0.1; Rate_Unit =>

PerSecond;];

 FACE::UUID => "_hwTiBkM1EeiBlKadCQCZ8Q";

 };

 flows

 EGI_to_ATC_port_source: flow source EGI_to_ATC_port;

 end EGI_process;

 process implementation EGI_process.impl

 subcomponents

 EGI: thread group EGI.impl;

 connections

 EGI_to_ATC_port_connection: port EGI.EGI_to_ATC_port ->

EGI_to_ATC_port;

 flows

 EGI_to_ATC_port_source: flow source EGI -> EGI_to_ATC_port_connection

-> EGI_to_ATC_port;

 end EGI_process.impl;

end balsa_PSSS;

Table 16 Example BALSA PSSS UoPs Modeled in AADL

BALSA Integration Model Examples in AADL

package balsa_integration_model

-- This example package demonstrates approaches

-- for describing a FACE Technical Standard TSS Library

-- in AADL

public

 with balsa_data_model;

 with balsa_PCS;

 with balsa_PSSS;

 with FACE;

 -- The AADL Annex for the FACE Technical Standard Edition 3.0

 -- Dictates that TSS libraries are modeled as abstracts and

 -- extended to meet the needs of the modeler(s).

 abstract Template_view_from_EGI_Data_transporter

SAE INTERNATIONAL NAME Page 29 of 33

Copyright 2018 Adventium Labs.

 features

 input0: in feature

balsa_data_model::Template_view_from_EGI_Data_Platform {

 FACE::UUID => "_hwdLZEM1EeiBlKadCQCZ8Q";

 };

 output: out feature

balsa_data_model::Template_view_from_EGI_Data_Platform {

 FACE::UUID => "_hwdLY0M1EeiBlKadCQCZ8Q";

 };

 properties

 FACE::Segment => TSS;

 FACE::UUID => "_hwdLYkM1EeiBlKadCQCZ8Q";

 end Template_view_from_EGI_Data_transporter;

 abstract Template_view_from_ATC_Data_transporter

 features

 input0: in feature

balsa_data_model::Template_view_from_ATC_Data_Platform {

 FACE::UUID => "_hwdLZ0M1EeiBlKadCQCZ8Q";

 };

 output: out feature

balsa_data_model::Template_view_from_ATC_Data_Platform {

 FACE::UUID => "_hwdLZkM1EeiBlKadCQCZ8Q";

 };

 properties

 FACE::Segment => TSS;

 FACE::UUID => "_hwdLZUM1EeiBlKadCQCZ8Q";

 end Template_view_from_ATC_Data_transporter;

 abstract Template_view_from_Aircraft_Config_transporter

 features

 input0: in feature

balsa_data_model::Template_view_from_Aircraft_Config_Platform {

 FACE::UUID => "_hwdLakM1EeiBlKadCQCZ8Q";

 };

 output: out feature

balsa_data_model::Template_view_from_Aircraft_Config_Platform {

 FACE::UUID => "_hwdLaUM1EeiBlKadCQCZ8Q";

 };

 properties

 FACE::Segment => TSS;

 FACE::UUID => "_hwdLaEM1EeiBlKadCQCZ8Q";

 end Template_view_from_Aircraft_Config_transporter;

 system BALSA_Integration_Model

 properties

 FACE::UUID => "_hwdLUEM1EeiBlKadCQCZ8Q";

 end BALSA_Integration_Model;

 -- This system implementation uses only the abstract representations of TSS

libraries.

 system implementation BALSA_Integration_Model.impl

 subcomponents

 --A UoP instance is analogous to the use of a thread group as a

subcomponent

 Instance_of_ATC_UoP: process balsa_PCS::ATCManager_process.impl {

 FACE::UUID => "_hwdLUUM1EeiBlKadCQCZ8Q";

 };

 --A UoP instance is analogous to the use of a thread group as a

subcomponent

 Instance_of_EGI_UoP: process balsa_PSSS::EGI_process.impl {

 FACE::UUID => "_hwdLVUM1EeiBlKadCQCZ8Q";

SAE INTERNATIONAL NAME Page 30 of 33

Copyright 2018 Adventium Labs.

 };

 --A UoP instance is analogous to the use of a thread group as a

subcomponent

 Instance_of_Air_Conf_UoP: process balsa_PSSS::AirConfig_process.impl {

 FACE::UUID => "_hwdLV0M1EeiBlKadCQCZ8Q";

 };

 --A UoP instance is analogous to the use of a thread group as a

subcomponent

 Instance_of_ADSB_UoP: process balsa_PSSS::ADSB_process.impl {

 FACE::UUID => "_hwdLWUM1EeiBlKadCQCZ8Q";

 };

 --Use a subclass of transport channel instead for more details

 UDP: virtual bus {

 FACE::UUID => "_hwdLa0M1EeiBlKadCQCZ8Q";

 };

 Template_view_from_EGI_Data_transporter: abstract

Template_view_from_EGI_Data_transporter;

 Template_view_from_ATC_Data_transporter: abstract

Template_view_from_ATC_Data_transporter;

 Template_view_from_Aircraft_Config_transporter: abstract

Template_view_from_Aircraft_Config_transporter;

 connections

 connection0: feature Instance_of_EGI_UoP.EGI_to_ATC_port ->

Template_view_from_EGI_Data_transporter.input0 {

 FACE::UUID => "_hwdLXEM1EeiBlKadCQCZ8Q";

 };

 connection1: feature Template_view_from_EGI_Data_transporter.output ->

Instance_of_ATC_UoP.ATC_From_EGI_Port {

 FACE::UUID => "_hwdLXUM1EeiBlKadCQCZ8Q";

 };

 connection2: feature Instance_of_ATC_UoP.ATC_To_ADSB_Port ->

Template_view_from_ATC_Data_transporter.input0 {

 FACE::UUID => "_hwdLXkM1EeiBlKadCQCZ8Q";

 };

 connection3: feature Template_view_from_ATC_Data_transporter.output ->

Instance_of_ADSB_UoP.ADSB_From_ATCManager_Port {

 FACE::UUID => "_hwdLX0M1EeiBlKadCQCZ8Q";

 };

 connection4: feature Instance_of_Air_Conf_UoP.AirConfig_to_ATC_port ->

Template_view_from_Aircraft_Config_transporter.input0 {

 FACE::UUID => "_hwdLYEM1EeiBlKadCQCZ8Q";

 };

 connection5: feature

Template_view_from_Aircraft_Config_transporter.output ->

Instance_of_ATC_UoP.ATC_From_AirConfig_Port {

 FACE::UUID => "_hwdLYUM1EeiBlKadCQCZ8Q";

 };

 end BALSA_Integration_Model.impl;

 -- The abstract TSS can be extended as a separate process and thread

 -- You might use this paradigm if send and receive message calls

 -- are serviced by a different thread from the calling UoP

 -- and you wish to analyze latency from one UoP to another through the TSS

library.

 thread Template_view_from_EGI_Data_transporter_thread extends

Template_view_from_EGI_Data_transporter

 flows

 through: flow path input0 -> output;

 end Template_view_from_EGI_Data_transporter_thread;

 thread implementation Template_view_from_EGI_Data_transporter_thread.impl

 end Template_view_from_EGI_Data_transporter_thread.impl;

SAE INTERNATIONAL NAME Page 31 of 33

Copyright 2018 Adventium Labs.

 -- An AADL process provides a memory space

 process egi_tss extends Template_view_from_EGI_Data_transporter

 flows

 through: flow path input0 -> output;

 end egi_tss;

 process implementation egi_tss.impl

 subcomponents

 t1: thread Template_view_from_EGI_Data_transporter_thread;

 end egi_tss.impl;

 -- The abstract TSS can alternatively be as subprogram group

 -- Subprograms in AADL are analogous to functions in most programming languages

 -- A subprogram group is analogous to a library of functions.

 -- You might use this paradigm if you want to generate source code for UoPs

 -- using AADL code generation tools.

 -- Note that this example shows only send_message and receive_message, omitting

several

 -- TSS functions and type specifiers on non-message parameters for brevity.

 subprogram send_message

 -- Parameters per E.3.2 of the FACE Technical Standard

 features

 connection_id: in parameter;

 timeout: in parameter;

 transaction_id: in out parameter;

 message: in parameter

balsa_data_model::Template_view_from_Aircraft_Config_Platform;

 return_code: out parameter;

 end send_message;

 subprogram receive_message

 -- Parameters per E.3.2 of the FACE Technical Standard

 features

 connection_id: in parameter;

 timeout: in parameter;

 transaction_id: in out parameter;

 message: in out parameter

balsa_data_model::Template_view_from_Aircraft_Config_Platform;

 header: out parameter;

 qos_parameters: out parameter;

 return_code: out parameter;

 end receive_message;

 subprogram group airconfig_tss extends

Template_view_from_Aircraft_Config_transporter

 features

 send_message: provides subprogram access send_message;

 receive_message: provides subprogram access receive_message;

 end airconfig_tss;

 subprogram group implementation airconfig_tss.impl

 end airconfig_tss.impl;

 -- The abstract TSS can be extended as separate system.

 -- This example shows a TSS library that uses a physical bus

 -- to transport data.

 system atc_tss extends Template_view_from_ATC_Data_transporter

 end atc_tss;

 -- The TSS system has two processes, one for each side of the communication

 process atc_side_tss extends Template_view_from_ATC_Data_transporter

 end atc_side_tss;

SAE INTERNATIONAL NAME Page 32 of 33

Copyright 2018 Adventium Labs.

 process adsb_side_tss extends Template_view_from_ATC_Data_transporter

 end adsb_side_tss;

 system implementation atc_tss.impl

 -- Use a prototype to delay specification of the bus

 prototypes

 bus_proto : bus;

 subcomponents

 atc_side : process atc_side_tss;

 adsb_side : process adsb_side_tss;

 b : bus bus_proto;

 connections

 conn1 : feature input0 -> atc_side.input0;

 conn2 : feature adsb_side.output -> output;

 throughput1: feature atc_side.output -> adsb_side.input0;

 properties

 Actual_Connection_Binding => (reference(b)) applies to throughput1;

 end atc_tss.impl;

 -- Define a physical bus to be specified for the TSS-as-a-system

 bus ethernet

 end ethernet;

 system implementation BALSA_Integration_Model.variants

 subcomponents

 --A UoP instance is analogous to the use of a thread group as a

subcomponent

 Instance_of_ATC_UoP: process balsa_PCS::ATCManager_process.impl {

 FACE::UUID => "_hwdLUUM1EeiBlKadCQCZ8Q";

 };

 --A UoP instance is analogous to the use of a thread group as a

subcomponent

 Instance_of_EGI_UoP: process balsa_PSSS::EGI_process.impl {

 FACE::UUID => "_hwdLVUM1EeiBlKadCQCZ8Q";

 };

 --A UoP instance is analogous to the use of a thread group as a

subcomponent

 Instance_of_Air_Conf_UoP: process balsa_PSSS::AirConfig_process.impl {

 FACE::UUID => "_hwdLV0M1EeiBlKadCQCZ8Q";

 };

 --A UoP instance is analogous to the use of a thread group as a

subcomponent

 Instance_of_ADSB_UoP: process balsa_PSSS::ADSB_process.impl {

 FACE::UUID => "_hwdLWUM1EeiBlKadCQCZ8Q";

 };

 -- TSS implemented as a separate process

 Template_view_from_EGI_Data_transporter: process egi_tss.impl;

 -- TSS implemented as subprogram group

 Template_view_from_Aircraft_Config_transporter: subprogram group

airconfig_tss.impl;

 -- TSS implemented as system (note specification for the bus

prototype)

 Template_view_from_ATC_Data_transporter: system atc_tss.impl

(bus_proto => bus ethernet);

 --Use a subclass of transport channel instead for more details

 UDP: virtual bus {

 FACE::UUID => "_hwdLa0M1EeiBlKadCQCZ8Q";

 };

 connections

SAE INTERNATIONAL NAME Page 33 of 33

Copyright 2018 Adventium Labs.

 connection0: feature Instance_of_EGI_UoP.EGI_to_ATC_port ->

Template_view_from_EGI_Data_transporter.input0 {

 FACE::UUID => "_hwdLXEM1EeiBlKadCQCZ8Q";

 };

 connection1: feature Template_view_from_EGI_Data_transporter.output ->

Instance_of_ATC_UoP.ATC_From_EGI_Port {

 FACE::UUID => "_hwdLXUM1EeiBlKadCQCZ8Q";

 };

 connection2: feature Instance_of_ATC_UoP.ATC_To_ADSB_Port ->

Template_view_from_ATC_Data_transporter.input0 {

 FACE::UUID => "_hwdLXkM1EeiBlKadCQCZ8Q";

 };

 connection3: feature Template_view_from_ATC_Data_transporter.output ->

Instance_of_ADSB_UoP.ADSB_From_ATCManager_Port {

 FACE::UUID => "_hwdLX0M1EeiBlKadCQCZ8Q";

 };

 connection4: feature Instance_of_Air_Conf_UoP.AirConfig_to_ATC_port ->

Template_view_from_Aircraft_Config_transporter.input0 {

 FACE::UUID => "_hwdLYEM1EeiBlKadCQCZ8Q";

 };

 connection5: feature

Template_view_from_Aircraft_Config_transporter.output ->

Instance_of_ATC_UoP.ATC_From_AirConfig_Port {

 FACE::UUID => "_hwdLYUM1EeiBlKadCQCZ8Q";

 };

 end BALSA_Integration_Model.variants;

end balsa_integration_model;

Table 17 Example BALSA TSS Variations Modeled in AADL

