
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[Distribution Statement A] Approved for public release and unlimited distribution.

AADL Security Annex
DRAFT

Dave Gluch
October

 2019

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii
[Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2019 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-
15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally
funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed
as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external and/or
commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM19-1020

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii
[Distribution Statement A] Approved for public release and unlimited distribution.

1 Table of Contents
1 Table of Contents ... iii

2 List of Figures .. v

3 List of Tables ... vi

A.1 Scope .. 2

A.2 Rationale ... 2

A.3 Approach ... 3

A.4 Terminology ... 3

A.5 Overview ... 4

A.6 Security Policies and Requirements ... 5

A.7 Documenting Security Policies and Requirements ... 5

A.8 Verification of Security Policies and Requirements .. 8

A.9 Information Security Levels ... 11

A.10 Information/Data Protection .. 13

A.11 Security Clearances .. 13

A.12 Security Level Property ... 15

A.13 Trusted Components ... 16

A.14 Property Set Modification .. 16

A.15 Analyzing Security Levels ... 16

A.16 Encryption ... 18

A.17 Data Authentication ... 19

A.18 Authenticated Encryption (AE) .. 21

A.19 Encryption and Key Management ... 22

A.20 Key and Certificate Management .. 23

A.21 Analyzing Encryption and Data Authentication ... 23

A.22 Access Control and Protection .. 24

A.23 Subject Authentication .. 24

A.24 Secure flows .. 25

A.25 Authorization ... 25

A.26 Access Control Modeling .. 25

A.27 Security Architectures ... 25

A.28 Analyzing Vulnerabilities/Threats/Attacks ... 26

Appendix B Informative Section ... 27

B.1 Security Policies and Requirements Examples .. 27

B.2 Security Policies .. 27

B.3 Security Requirements .. 28

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv
[Distribution Statement A] Approved for public release and unlimited distribution.

B.4 Security Policy Verification .. 29

B.5 Cross Domain System Example ... 29

B.6 AADL Property Files .. 35

4 Normative References ... 43

5 Informative References .. 43

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY v
[Distribution Statement A] Approved for public release and unlimited distribution.

2 List of Figures

Figure 1: Generic E-Enabled Transport Aircraft.. 27
Figure 2: AADL Model of the Cross Domain Solution Architecture .. 30
Figure 3: MILS Architecture of the TSAccessUnit .. 33

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vi
[Distribution Statement A] Approved for public release and unlimited distribution.

3 List of Tables
Table 1: Safety and Security Terminology .. 3
Table 2: Example System Security Policy .. 6
Table 3: Refinement and Decomposition of Policies and Requirements .. 6
Table 4: Example Global Security Requirement ... 7
Table 5: Example Security Verification Plan ... 8
Table 6: Example Verification Methods .. 9
Table 7: Example Assurance Cases ... 9
Table 8: Partial Output of Aircraft Control Assurance Case ... 10
Table 9: AADL Information Security Level Properties .. 11
Table 10: Semantics of Information Security Level Properties for AADL Component Categories 12
Table 11: AADL Security Clearance Properties .. 13
Table 12: Semantics of Security Clearance Properties for AADL Component Categories 14
Table 13: Security_Level Properties ... 15
Table 14: Trusted Property ... 16
Table 15: Example Property Modification ... 16
Table 16: Example Resolute Security Level Claims ... 17
Table 17: The Encryption Property ... 18
Table 18: Encryption Property Semantics ... 19
Table 19: Data Authentication Property .. 20
Table 20: Data Authentication Property Semantics .. 20
Table 21: Authenticated Encryption Example ... 21
Table 22: Abstract Component ‘key’ ... 22
Table 23: Encryption and Authentication Key-Related Properties and Types .. 22
Table 24: Certificate Modeled as an AADL Data Component .. 23
Table 25: Example Resolute Encryption Functions and Claims ... 23
Table 26: Example Data Authentication Resolute Functions .. 24
Table 27: The Subject Authentication Property .. 25
Table 28: Example System Security Policies .. 28
Table 29: Example Security Requirements Sets for Aircraft Control System ... 29
Table 30: Security Level Property Associations.. 31
Table 31: Resolute Claims and Analysis Results ... 31
Table 32: Example Authenticated Encryption Property Associations ... 32
Table 33: The Three Domain MILS System Implementation .. 33
Table 34: Security Classification Properties ... 35
Table 35: Security Enforcement Properties .. 37
Table 36: Custom Security Package ... 40

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1
[Distribution Statement A] Approved for public release and unlimited distribution.

RATIONALE

The AADL Security Annex (AADL-SA) supports the engineering of secure embedded (cyber-physical)
systems by providing guidance for engineers in modeling and analyzing a system’s security characteristics
using the SAE Architecture Analysis and Design Language (AADL).

This Architecture Analysis & Design Language (AADL) Security Annex document was prepared by the SAE
AS-2C Architecture Description Language Subcommittee, Embedded Computing Systems Committee,
Aerospace Avionics Systems Division.

This is a draft of the SAE Architecture Analysis and
Design Language (AADL) Security Annex (AADL-SA).

It is for review only.

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
[Distribution Statement A] Approved for public release and unlimited distribution.

A.1 Scope

(1) This document describes the Architecture Analysis & Design Language Security
Annex. The AADL Security Annex provides guidance and support for specifying,
modeling, and analyzing a system’s security characteristics within AADL
architecture models. The approach presented in this document enables the
engineering of secure cyber-physical systems using the AADL and supporting tool
environments such as the Open Source AADL Tool Environment (OSATE).

A.2 Rationale

(2) Software-reliant, safety-critical embedded (cyber-physical) systems often operate
in untrusted environments. In these environments, they are exposed to potential
attacks trying to exploit vulnerabilities to cause damage, harm people, or
compromise or steal important (e.g. classified) information.

(3) As a result, security is a critical consideration in the development and operation of
these systems. Security protections and properties must be correctly and
completely specified, implemented, and validated throughout the system
development lifecycle. To do so, engineers need to capture security policies and
requirements and ensure their correct implementation in a software system
architecture and design. This security annex is intended to support these activities
by adding the requisite elements to the AADL language and tools such as the Open
Source AADL Tool Environment (OSATE) and providing guidance to specify,
model, and analyze the security aspects of a system architecture.

(4) Traditionally, software security has focused on coding issues. For example, buffer
overflows, use of unsafe functions (e.g. legacy functions from the C standard
libraries - strcpy - instead of their secure versions - strncpy), types mismatches,
improper memory handling, etc. have been the root causes of a large number of
security issues.

(5) There is increased interest in going beyond software ‘bugs’ to identifying flaws in
the software architecture and design [Arce 2014]. Examples of flaws resulting in
security problems include misunderstanding architecturally significant
requirements, poor architectural implementation, and violation of established
design principles resulting in architecture flaws. As a result, there is an effort
underway to define a common Architecture Weaknesses Enumeration that builds
on the Common Software Weaknesses Enumeration [CWE] [Mirakhorli 2016].

(6) Capturing a software architecture with its security characteristics using a formal
notation enables security analysis and vulnerability discovery early in the life cycle.
This has motivated the development of AADL-specific modeling capabilities, which
capture security requirements and policies within AADL models. By employing
appropriate tools, these AADL models can be used to implement and validate the
implementation of security policies and features.

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
[Distribution Statement A] Approved for public release and unlimited distribution.

A.3 Approach

(7) This annex has been developed to support the modeling and analysis of system
architecture security using the AADL. It provides guidelines and defines AADL
security properties and elements to support modeling and analysis of security within
system architectures.

(8) The annex describes practices that utilize the core capabilities of the AADL,
security-specific property sets and verification methods, and specialized AADL
components for use within the OSATE environment. There is flexibility for a user to
modify and add to the property sets and components provided by this annex.

(9) In this annex, the Architecture-Led Incremental System Assurance (ALISA)
environment of OSATE is used as an exemplar of the recommended capabilities
for capturing and verifying security policies and requirements. Other comparable
systems may be used, provided they include the basic support required by this
annex.

(10) A core of security verification within this annex is the use of formal statements (e.g.
predicates) whose validity is assessed across all or a portion of a system software
architecture. As part of this annex, a set of example verification method statements
using Resolute [Resolute 2014] and JAVA are provided. These can be used directly
for analysis or as exemplars for the development of additional methods. As
appropriate, other analysis and constraint languages can be employed.

A.4 Terminology

(11) The security annex relies on a set of key concepts and associated terminology
useful in modeling and analyzing secure embedded systems. This set is adapted
from a variety of sources and does not conform in its entirety to any specific security
perspective or standard. Table 1 summaries key terms used in this annex, including
relevant terms from safety analysis.

(12) For the purposes of this document we distinguish security from safety based upon
intentionality. That is, security is the freedom from loss due to intentional (malicious)
actors and safety is the freedom from loss due to both intentional and unintentional
causes. In traditional security engineering, the primary causal concern is
unauthorized access by external actors and the focus is on approaches to prevent
unauthorized access. Traditionally, in safety engineering, primary considerations
are losses from any cause, sometimes without explicit consideration of malicious
intent.

Table 1: Safety and Security Terminology

Term Definition Comments

loss A loss is a condition that results from events
such as accidents [Leveson 2012] or the
realizations of hazards [Feiler 2016] or threats

Loss can also be considered an event, as in
the definition “the action or state of not having
or keeping something any more”
[CAMBRIDGE].

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
[Distribution Statement A] Approved for public release and unlimited distribution.

A.5 Overview

(13) The AADL Security Annex provides guidance and support for system architecture
security specification, modeling, and analysis throughout the system lifecycle from
concept to implementation through to operational system maintenance and
upgrade.

(14) The security annex provides guidance and support to specify security policies and
requirements, verify that security requirements satisfy security policies, and assure
that there are mechanisms that enforce security policies and security requirements
within a system architectural specification.

(15) The security annex provides guidance and support for architecture specification,
modeling, and analysis of security protections, including information/data
protection, access control and protection, and action/command Protection.

(16) The security annex provides guidance and support for architecture specification,
modeling, and analysis of security architectures, including specialized security

1 In general use, the term threat encompasses both intentional and unintentional environmental conditions. In the case of

‘unintentional’ safety considerations a threat would be the specification of the hazard (system conditions) plus a description of
the requisite environmental conditions.

[NIST 2016]. Loss is used in a general sense of
harm (i.e. deleterious condition).

accident An accident is an undesired or unplanned event
that results in a loss, including loss of human life
or human injury, property damage,
environmental pollution, mission loss, etc.
Adapted from [Leveson 2012]

This definition encompasses loss from
intentional as well as unintentional events.

hazard A hazard is a system state or set of conditions
that, together with a particular set of
environmental conditions, will lead to a loss.
Adapted from [Leveson 2012]

hazard
contributor

A hazard contributor is a state or set of
conditions of a subsystem or component that is
part of or adds to a hazard.

This supports decomposition of a system
hazard.

vulnerability
(security
hazard)

A vulnerability (security hazard) is a system state
or set of conditions (including security
procedures, internal controls, design, or
implementation) that could be exploited by an
attacker (i.e. with a particular set of
environmental conditions, will lead to a loss).

This is similar to the [NIST 2012] definition
Weakness in an information system, system
security procedures, internal controls, or
implementation that could be exploited by a
threat source.

threat0F

1
(security
threat)

A threat is a specified vulnerability plus a
specification of an attacker, attacker access, and
attacker capability to exploit the vulnerability (i.e.
a security hazard with specified environmental
conditions).

Success is ensured given an attacker with
access and capability (i.e., addressing the ‘will
lead to’ in the definition of hazard).

attack An attack is an unauthorized attempt to access a
system, usually with malicious intent.

attacker An attacker is an entity (or a coordinated set of
entities) that engages in or attempts to engage in
an attack.

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
[Distribution Statement A] Approved for public release and unlimited distribution.

architectures such as multiple independent levels of security (MILS) and cross
domain solutions (CDS).

(17) The security annex provides guidance and support for the modeling and analysis
of vulnerabilities/threats/Attacks. – TBD

A.6 Security Policies and Requirements

(18) From [NIST 2016] a security policy is a set of rules that governs all aspects of
security-relevant system and system element (technology, machine, and human,
elements) behavior. The rules can be stated at very high levels (e.g., organizational
policy that defines acceptable behavior of employees in performing their
mission/business functions) or at very low levels (e.g., an operating system policy
that defines acceptable behavior of executing processes and use of resources by
those processes).

(19) We consider security policies to be general statements about security attributes of
a system and security requirements as statements that define the functions and
capabilities that must exist within a system to satisfy security policies.

(20) The implementation elements of a system must satisfy security requirements and
their associated policies. However, for some the distinction is arbitrary. In order to
provide flexibility, we present an approach which enables a user to distinguish
between policies and requirements.

(21) The procedures and artifacts described in this annex assume a systematic policy
and requirements documentation and analysis approach that includes tool support.
This approach involves both natural language and verifiable (formalized)
requirements statements and the use of assurance cases for verification of policies
and requirements.

(22) As a representative systematic policy and requirements documentation and
analysis approach for the procedures, artifacts, and examples presented in this
document, we use the Architecture-Led Incremental System Assurance (ALISA)
workbench, which is part of the OSATE tool suite.

(23) In using the ALISA workbench, security policies and requirements are documented,
verification plans and verification methods for those policies and requirements are
defined, and assurance cases for those policies and requirements are created. The
assurance cases are the foundation for system security verification.

A.7 Documenting Security Policies and Requirements

(24) As an exemplar for the documentation of security policy and requirements, we use
the ReqSpec capabilities that are part of the ALISA workbench. Both security
policies and security requirements are captured as requirements declarations within
the ALISA notation.

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
[Distribution Statement A] Approved for public release and unlimited distribution.

(25) Security policies are organized into system requirement sets that are explicitly
identified as security policy statements by naming the file as a policies file (e.g.
TransportAircraftSecuirtyPolicies.reqspec) and the system requirements set within
that file (e.g. TransportAircraftSystemSecurityPolicies). An excerpt from security
policies for a transport aircraft system is shown in Table 2, which shows a single
requirement (policy) statement named Security.

Table 2: Example System Security Policy

system requirements TransportAircraftSystemSecurityPolicies : "System-Wide Security
Policies"
for TransportAircraft_Generic::transportAircraft.generic

[
 description "These are the high level (system) security policies for an air transport
aircraft."

 requirement Security: "System Security must be provided"
 [
 description "Security protections that meets FAA aircraft security and
 flight worthiness certification standards must be provided."

]

(26) Global requirements and global requirement sets can be used for security policies
and requirements that apply to all the specified components of a system or security
policies and requirements that can be applied to multiple systems.

(27) Once security policies are defined they can be decomposed (policies/requirements
derived from that of an enclosing system-traceability across architecture layers) or
refined (more detailed specification of a policy/requirement for the same system.).
For example, a system security policy may be refined into policy statements about
confidentiality, integrity, and availability. A policy statement about communications
security can be decomposed in communications policy statements for subsystems.

(28) Eventually security policy statements should be decomposed and/or refined into
security requirement statements for more detailed verification. Examples of refine
and decompose are shown in Table 3.

Table 3: Refinement and Decomposition of Policies and Requirements

system requirements TransportAircraftSystemSecurityPolicies : "System-Wide Security
Policies" for TransportAircraft_Generic::transportAircraft.generic

-- This is an access control policy statement for the aircraft system.
requirement AccessControlPolicy: "Security Controlled Access to all Aircraft Systems
and Resources must be provided."
 [
 description "Access to all Aircraft operational and maintenance Systems and
Resources shall be permitted only by authorized personnel."
 development stakeholder DevelopmentTeam.PrincipalEngineer
DevelopmentTeam.SecurityEngineer

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
[Distribution Statement A] Approved for public release and unlimited distribution.

]
-- This is a refinement of the access control policy statement for the aircraft.
 requirement AccessControlPolicyAuthentication: "This is a refinement of the
AccessControlPolicy for the aircraft."
 [
 description "Access authorization to all Aircraft operational and maintenance
Systems and Resources shall employ multi-factor authentication."
 refines TransportAircraftSystemSecurityPolicies.AccessControlPolicy
]
-- This is a secure communication policy statement for the aircraft system.
requirement SecureCommunicationsPolicy: "Secure communications must be provided for
all flight- and safety-critical systems."
 [
description "Communication systems must provide security measures to ensure only
authorized access and use."
 development stakeholder
DevelopmentTeam.PrincipalEngineer DevelopmentTeam.EncryptionExpert
DevelopmentTeam.SecurityEngineer
]

-- This is a requirement statement for the aircraft control system that decomposes
the Security and Secure Communication Policies for the aircraft.
 requirement communicationProtectionReq2: "All aircraft external
communication for aircraft control and flight operations must employ the latest NIST
standard encryption algorithms""
 [
 description "All aircraft external communication for aircraft control and
flight operations must employ encryption algorithms that meet or exceed the standards
defined in NIST publication FIPS 140-2 or any superseding document that have been
released for use."
 decomposes TransportAircraftSystemSecurityPolicies.Security
TransportAircraftSystemSecurityPolicies.SecureCommunicationsPolicy
]

(29) If no distinction is made between security policy and security requirement
statements and only security requirements are defined for a system, the security
requirements are captured as system requirements and organized into system
requirement sets. These can then be decomposed and refined into additional
security requirements. An example for a global security requirement that all
connections must be encrypted is shown in Table 4.

Table 4: Example Global Security Requirement

global requirements GlobalSecurity

[
 requirement encrypted_connections :
 "All connections in the system must be encrypted." for connection
 [
 description "All connections have encryption."
 development stakeholder DevelopmentTeam.SecurityEngineer
]
]

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8
[Distribution Statement A] Approved for public release and unlimited distribution.

A.8 Verification of Security Policies and Requirements

(30) The verification of security policies includes elements to validate an AADL
architecture model against a specific security policy (e.g. checks of the
communications and connections among components to ensure that there are no
classified systems or entities communicating directly with unclassified entities).

(31) The verification and analysis described in this annex does not assure the
effectiveness, self-consistency, or validity of a security policy(ies) for a specific
application.

(32) As an exemplar for the documentation of security policy and requirements, we use
the capabilities that are part of the ALISA workbench. This include the verify
capabilities (i.e. the verify notation) of ALISA (OSATE). Security verification plans,
procedures, and activities are organized using the assurance case and verification
capabilities within ALISA (i.e. the Alisa and Assure notations). The results are
captured using the Assure notation with ALISA (OSATE).

(33) A verification plan is captured in a .verify file as shown in Table 5, where a portion
of the verification plan for the security policies of the Transport Aircraft System. The
plan includes claims for the policies being verified. The Security claim in Table 5
refers to the policy requirement statement ‘Security’ shown in Table 2 for the
Transport Aircraft. The activities declaration in Table 5 identifies the verification
method(s), specifically the activity ‘ConfirmCertifications’ uses the
‘ReviewSecurityCertification’ method that is declared in the method registry
‘AircraftSecurityVerificationMethods.’

Table 5: Example Security Verification Plan

verification plan TransportAircraftSecurityPolicyVerificationPlan : "Verification Plan for a
Transport Aircraft Security Policies"
for TransportAircraftSystemSecurityPolicies
[
 description "This is the top-level verification plan for the security policies for
the aircraft system."

 claim Security
 [
 activities
 ConfirmCertifications:
AircraftSecurityVerificationMethods.ReviewSecurityCertification ("certification
submissions")
]

(34) Verification methods are declared in method registry files. Portions of a method
registry ‘AircraftSecurityVerificationMethods’ are shown in Table 6. The
‘ReviewSecurityCertification’ method is a manual review. The ‘VerifyHasEncryption’
and ‘VerifyHasAuthenticatedEncryption’ methods are Resolute claims and
‘JavaCheckTrusted’ is a Java method.

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
[Distribution Statement A] Approved for public release and unlimited distribution.

Table 6: Example Verification Methods

verification methods AircraftSecurityVerificationMethods :
"These are the security verification methods for Aircraft Systems."

[
 method ReviewSecurityCertification (document: string) : "A formal review to confirm
compliance with all required security certifications"
 [
 manual FormalPanelReview
 description "Formal review by a certification panel to confirm compliance"
]

...

 method VerifyEncryption (component): "verify that a component has encryption
 A Resolute claim that the encryption property is true."
 [
 resolute
Security_Exposure_Util.Security_Exposure_Util_public.Resolute.Resolute.is_encrypted
 description "This confirms encryption."
]

 method VerifyHasAuthenticatedEncryption (component): "Verify that the element has or
provides authenticated encryption -- Resolute"
 [
 resolute
Security_Enforcement_Resolute.Security_Enforcement_Resolute_public.Resolute.Resolute.compone
nt_has_authenticated_encryption
 description "This confirms the element has authenticated encryption."
]

...

method JavaCheckTrusted (component):
 "Use Java for isTrusted"
 [
 java
org.osate.securitylibrary.SecurityVerificationJava.bin.securityverification.SecurityClassifi
cationUtil.isTrusted()
]

(35) Both Resolute and Java methods are automated verification activities, which can
be executed as part of the assurance case capabilities of ALISA. A portion of an
assurance cases for the transport aircraft and the transport flight control system are
shown in Table 7. These reference the verification plans for the transport aircraft
security policies and requirements and verification plan for the aircraft control
systems.

Table 7: Example Assurance Cases

assurance case TransportAircraftAssuranceCase for
TransportAircraft_Generic::transportAircraft
 [
assurance plan TransportAircraftAssurancePlanGeneric for
TransportAircraft_Generic::transportAircraft.generic
[

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
[Distribution Statement A] Approved for public release and unlimited distribution.

 description "Security Assurance Plan for Transport Aircraft"
 assure TransportAircraftSecurityPolicyVerificationPlan
TransportAircraftSecurityVerificationPlan

]]

assurance case AircraftControlSecurityAssuranceCase for AircraftControl_pkg::aircraftControl
 [

assurance plan AircraftControlSecurityAssurancePlan for
AircraftControl_pkg::aircraftControl.basic
[
 description "Security Assurance Plan for Transport Aircraft flight control system"
 assure AircraftControlSecurityVerificationPlan
]]

(36) The partial output from running the assurance case for the aircraft control systems

using the assurance case and verification plans shown in Table 7 are presented in
Table 8. These are outputs of Resolute claim methods verifying encryption on
communications.

Table 8: Partial Output of Aircraft Control Assurance Case

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
[Distribution Statement A] Approved for public release and unlimited distribution.

A.9 Information Security Levels

(37) There is a primary information security level property and an information security
caveats property. Both property declarations are shown in Table 9.

(38) In instance models, information security levels and associated caveats are
applicable only to data instances and to their associated classifiers in declarative
models. However, to enable modeling at abstract levels (i.e. without having to
define individual data components or runtime environments) it is useful to apply
information security levels and caveats to systems, processes, devices, ports, and
abstract components.

(39) Since the information security level and caveat properties are defined as inherit, a
property association value within a component classifier is inherited by all
subcomponents of instances of that classifier, which are instances of the
component categories of the information security level or caveat property, unless
overridden.

(40) With these modeling elements included, you can define a functional (conceptual)
model where data is stored within and transferred among components, independent
of the internal structure of the components or systems (i.e. complete
implementations) using systems, processes and devices or creating models without
defining a specific AADL category (i.e. using abstract). Thus, a complex cross
domain system can be represented as discussed in the appendix: Cross Domain
System Example.

Table 9: AADL Information Security Level Properties

-- Information Security Levels
 --
 Information_Security_Level: inherit enumeration (TopSecret, Secret, Confidential,
Unclassified)
 applies to (data, port, system, process, device, abstract);
 --
 Information_Security_Caveats: inherit aadlstring
 applies to (data, port, system, process, device, abstract);

(41) Information security properties are applied to AADL component categories that
embody information (i.e. data) or those that can contain information either directly
or indirectly as subcomponents. The abstract category is included, since it can be
used in conceptual modeling and can be extended into one of the other categories
listed.

(42) Caveats can be used to create multilateral-secure systems as in [Anderson 2008]
Chapter 9. Combined with information security levels, this can be used to represent
a system with a lattice-based permission architecture (see [Anderson 2008] Figure
9.6).

(43) The semantics of information security level properties are presented in Table 10.

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
[Distribution Statement A] Approved for public release and unlimited distribution.

Table 10: Semantics of Information Security Level Properties for AADL Component Categories

When declared for a data classifier, all data instances of the classifier have the specified security level
and all subcomponents of those instances inherit the specified security level, consistent with the
applicability and semantics of security clearance properties for the subcomponent category (i.e. data,
abstract), unless the inherited value is overridden.

All of the provides data access data classifiers for a data instance must have the same
information security level as the data instance. This requirement is not enforced by the AADL
property semantics and must be ensured by the user.

When declared for a data instance, that instance has the specified security level and all
subcomponents inherit the specified security level, consistent with the applicability and semantics of
security clearance properties for the subcomponent category (i.e. data, abstract), unless the inherited
value is overridden.

All of the provides data access data classifiers for a data instance must have the same
information security level as the data instance. This requirement is not enforced by the AADL
property semantics and must be ensured by the user.

When declared for a data or event data port, the information level and information security caveats
apply to the data buffer or queue associated with the port (i.e. the data or event data port maps to a
static variable in the source text that represents the data buffer or queue). The data passing through
the port has the information security levels specified. The information level and information security
caveats property values of the port and the data classifier for the port must be the same.

When declared for a system classifier or instance, all of the subcomponents of the associated system
instances inherit the specified security level, consistent with the applicability and semantics of security
clearance properties for the subcomponent category, unless the inherited value is overridden.

The data classifiers for all the associated system instances’ external data port, event data port
and provides data access features must have the same information security level as the
system instance. These requirements are not enforced by the AADL property semantics and
must be ensured by the user.

When declared for a process classifier or instance, all of the subcomponents of the associated system
instances inherit the specified security level, consistent with the applicability and semantics of security
clearance properties for the subcomponent category, unless the inherited value is overridden.

The data classifiers for all the associated process instances’ data port, event data port and
provides data access features must have the same information security level as the process
instance. These requirements are not enforced by the AADL property semantics and must be
ensured by the user.

When declared for a device classifier or instance, all of the subcomponents of the associated system
instances inherit the specified security level, consistent with the applicability and semantics of security
clearance properties for the subcomponent category, unless the inherited value is overridden.

The data classifiers for all the associated device instances’ data port and event data port
features must have the same information security level as the device instance. These
requirements are not enforced by the AADL property semantics and must be ensured by the
user.

When declared for an abstract classifier, all extensions of that abstract classifier have the specified
information security level consistent with the applicability and semantics of the information level
security properties for the category of the extension.

Note that if a feature group is a feature of a component it is impacted, in that the features within the
feature group, which have data classifiers, such as data ports, must comply with the semantics of
information security levels presented in this section.

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13
[Distribution Statement A] Approved for public release and unlimited distribution.

A.10 Information/Data Protection

(44) Data security classification properties are declared in the property set
SecuirtyClassificationProperties and related enforcement and analysis properties
in the property set SecurityEnforcementProperties.

(45) User defined classifications are declared in the property set
UserdefinedSecurityConstants. Additional AADL modeling elements are available
in the package SecurityAnnexCustomPkg.

A.11 Security Clearances

(46) The security clearance properties include a principal security classification (e.g. Top
Secret, Secret, Confidential) and a supplemental statement (e.g. specialized
authorizations or restrictions).

(47) A secondary clearance and secondary supplemental statement property is
included. No assumption is made about the relationship of the Security_Clearance
property and the Secondary_Security_Clearance property.

(48) Security Clearance properties, as shown in Table 11, are contained in the property
set SecurityClassificationProperties. This property set can be edited to allow
modification of the enumerated values.

Table 11: AADL Security Clearance Properties

--
 Security_Clearance: inherit enumeration (TopSecret, Secret, Confidential,
No_Clearance) applies to (system, device, processor, virtual processor, thread, thread
group, subprogram, subprogram group, process, abstract);
 --
 Security_Clearance_Supplement: inherit aadlstring applies to (system, device,
processor, virtual processor, thread, thread group, subprogram, subprogram group, process,
abstract);
 --
Secondary_Security_Clearance: inherit enumeration (TopSecret, Secret, Confidential,
No_Clearance) applies to (system, device, processor, virtual processor, thread, thread
group, subprogram, subprogram group, process, abstract);
 --
 Secondary_Security_Clearance_Supplement: inherit aadlstring applies to (system,
device, processor, virtual processor, thread, thread group, subprogram, subprogram group,
process, abstract);

(49) Security Clearance properties are applied to elements that can actively access and
process information. The abstract category is included, since it can be extended
into one of the other categories listed.

(50) Table 12 presents the semantics of security clearances.

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14
[Distribution Statement A] Approved for public release and unlimited distribution.

Table 12: Semantics of Security Clearance Properties for AADL Component Categories

When security clearances are declared for a system classifier, all instances of that classifier have the
specified clearance or clearances and all subcomponents have the specified clearance or clearances,
consistent with the applicability and semantics of security clearance properties for the subcomponent
category, unless the inherited property value is overridden.

When security clearances are declared for a system instance, that instance has the specified
clearance or clearances and all subcomponents have the same clearance or clearances,
consistent with the applicability and semantics of security clearance properties for the
subcomponent category, unless the inherited property value is overridden.

When security clearances are declared for a device classifier, all instances of that classifier have the
specified clearance or clearances and all subcomponents have the specified clearance or clearances,
consistent with the applicability and semantics of security clearance properties for the subcomponent
category (i.e. abstract subcomponents have the specified security) unless the inherited property value
is overridden.

When security clearances are declared for a device instance that instance has the specified
clearance or clearances and all subcomponents have the specified clearance or clearances,
consistent with the applicability and semantics of security clearance properties for the
subcomponent category, unless the inherited property value is overridden.

When security clearances are declared for a processor classifier, all instances of that classifier have
the specified clearance or clearances and all subcomponents have the specified clearance or
clearances, consistent with the applicability and semantics of security clearance properties for the
subcomponent category (i.e. virtual processor, abstract) unless the inherited property value is
overridden.

When security clearances are declared for a processor instance that instance has the specified
clearance or clearances and all subcomponents have the specified clearance or clearances,
consistent with the applicability and semantics of security clearance properties for the
subcomponent category, unless the inherited property value is overridden.

When security clearances are declared for a virtual processor classifier, all instances of that classifier
have the specified clearance or clearances and all subcomponents have the specified clearance or
clearances, consistent with the applicability and semantics of security clearance properties for the
subcomponent category (i.e. virtual processor, abstract) unless the inherited property value is
overridden.

When security clearances are declared for a virtual processor instance that instance has the
specified clearance or clearances and all subcomponents have the specified clearance or
clearances, consistent with the applicability and semantics of security clearance properties for
the subcomponent category, unless the inherited property value is overridden.

When security clearances are declared for a thread classifier, all instances of that classifier have the
specified clearance or clearances and all subcomponents have the specified clearance or clearances,
consistent with the applicability and semantics of security clearance properties for the subcomponent
category (i.e. subprogram, abstract) unless the inherited property value is overridden.

When security clearances are declared for a thread instance that instance has the specified
clearance or clearances and all subcomponents have the specified clearance or clearances,
consistent with the applicability and semantics of security clearance properties for the
subcomponent category, unless the inherited property value is overridden.

When security clearances are declared for a thread group classifier, all thread subcomponents have
the specified clearance or clearances, consistent with the applicability and semantics of security
clearance properties for threads unless the inherited property value is overridden.

When security clearances are declared for a subprogram classifier, all instances of that classifier have
the specified clearance or clearances and all subcomponents have the specified clearance or

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15
[Distribution Statement A] Approved for public release and unlimited distribution.

clearances, consistent with the applicability and semantics of security clearance properties for the
subcomponent category (i.e. subprogram, abstract) unless the inherited property value is overridden.

When security clearances are declared for a subprogram instance that instance has the
specified clearance or clearances and all subcomponents have the specified clearance or
clearances, consistent with the applicability and semantics of security clearance properties for
the subcomponent category, unless the inherited property value is overridden.

When security clearances are declared for a subprogram group classifier, all subprogram
subcomponents have the specified clearance or clearances, consistent with the applicability and
semantics of security clearance properties for subprograms unless the inherited property value is
overridden.

When security clearances are declared for a process classifier, all instances have the specified
clearance or clearances and all subcomponents have the specified clearance or clearances, consistent
with the applicability and semantics of security clearance properties for the subcomponent category
(i.e. subprogram, thread, abstract) unless the inherited property value is overridden.

When security clearances are declared for a process instance that instance has the specified
clearance or clearances and all subcomponents have the specified clearance or clearances,
consistent with the applicability and semantics of security clearance properties for the
subcomponent category, unless the inherited property value is overridden.

When security clearances are declared for an abstract classifier, all extensions of that abstract
classifier have the specified clearance or clearances, consistent with the applicability and semantics of
security clearance properties for the category of the extension.

A.12 Security Level Property

(51) The property Security_Level is used where no distinction is required between
security subjects (i.e. Security_Clearance properties) and security objects (i.e.
Information_Secruity_Level properties) in modeling a system. For flexibility, we
declare the Security_Level_Caveats property as an AADL string property. The
declaration of the basic security level properties is shown in Table 13.

(52) The Security_Level property has the enumerated values as shown. However, these
can be replaced or extended by a user. As with the other security classification
properties, the basic security level properties are declared as inherit, allowing
inheritance through the architecture hierarchy.

(53) The semantics of the Security_Level properties are those described in Table 10
and Table 12 for the Information Security Level and Security Clearance properties.

Table 13: Security_Level Properties

-- Note: The SEI property set has a SecurityLevel property that is an integer.
--
 Security_Level: inherit enumeration (TopSecret, Secret, Confidential, Unclassified)
applies to (system, processor, virtual processor, thread, thread group, subprogram,
subprogram group, data, port, process, device, abstract);
--
 Security_Level_Caveats: inherit aadlstring applies to (system, processor, virtual
processor, thread, thread group, subprogram, subprogram group, data, port, process, device,
abstract);

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16
[Distribution Statement A] Approved for public release and unlimited distribution.

A.13 Trusted Components

(54) A trusted component or system is one that is relied upon to a specified extent to
enforce a specified security policy and one that has been verified to some defined
level to warrant that trust. In essence, a trusted entity is one whose failure would
break a security policy (i.e. the component or system is trusted to function as
expected and to be unmodified from the expected [Wiki-Trusted]. For example, the
trusted components of Multiple Independent Levels of Security/Safety (MILS) from
[Rushby 2008] are such that "trusted components ...depend only on very simple
environments that can be provided with strong assurance."

(55) Trusted is not an inherited property. It must be specified for a component classifier
or instance. The property declaration for Trusted is shown in Table 14.

Table 14: Trusted Property

Trusted : aadlboolean applies to (system, process, thread, thread group, subprogram,
subprogram group, processor, virtual processor, bus, virtual bus, abstract);

A.14 Property Set Modification

(56) The SecurityClassificationProperties and SecurityEnforcementProperties property
sets can be edited by a user.

(57) A principal objective of these editable property sets is to enable the modification of
enumerated values. For example, a user might edit the Security_Level property to
have High, Medium, and Low values rather than the values declared in the security
classifications property set, as shown in Table 15.

Table 15: Example Property Modification

 Security_Level: inherit enumeration (High, Medium, Low) applies to (system,
processor, virtual processor, thread, thread group, subprogram, subprogram group, data,
port, process, device, abstract);

(58) With this capability, specific property analysis plugins can be developed that use
the original property name in developing the analysis code but reads the user-
specified values from the modified property set when executing an analysis.

A.15 Analyzing Security Levels

(59) Resolute or other constraint or formal expression language as well as JAVA
methods can be used to analyze security classifications for a system model.

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17
[Distribution Statement A] Approved for public release and unlimited distribution.

(60) The annex includes example Resolute security functions and claims in the library
(AADL package) Security_Classifications_Resolute. Excerpts from this library are
shown in Table 16. A complete listing is included in the appendix.

(61) The JAVA package securityverification has example JAVA classes and methods
for analysis. A partial listing of this package is included in the Appendix.

Table 16: Example Resolute Security Level Claims

 has_security_clearance (cp:component) <=
 ** "component " cp " has a security clearance" **
 has_property(cp, SecurityClassificationProperties::Security_Clearance)
 --
 has_top_secret_security_clearance (cp: component) <=
 ** " component " cp " has Top Secret security clearance" **
 property (cp, SecurityClassificationProperties::Security_Clearance, "No_Value") =
"TopSecret"
 --

 has_information_security_level (cp:component) <=
 ** "component " cp " has an information security level" **
 has_property(cp, SecurityClassificationProperties::Information_Security_Level)
 --
 has_top_secret_information_security_level (cp: component) <=
 ** " component " cp " has Top Secret security information security Level" **
 property (cp, SecurityClassificationProperties::Information_Security_Level,
"No_Value") = "TopSecret"
 --

 has_security_level (cp:component) <=
 ** "component " cp " has an information security level" **
 has_property(cp, SecurityClassificationProperties::Security_Level)

 has_top_secret_security_level (cp: component) <=
 ** " component " cp " has Top Secret security information security Level" **
 property (cp, SecurityClassificationProperties::Security_Level, "No_Value")
= "TopSecret"
 --

 all_subcomponents_have_security_level_or_are_trusted (cp: component) <=
 ** "all subcomponents of component " cp " have a value for_security level" **
 exists(sbx: subcomponents(cp)).(has_property (sbx,
SecurityClassificationProperties::Security_Level))
 and
 (forall(sb: subcomponents(cp)).(has_property (sb,
SecurityClassificationProperties::Security_Level))
 or
 has_property(sb,SecurityClassificationProperties::Trusted))

all_subcomponents_have_security (cp: component) <=
 ** "all subcomponents of component " cp " have a value for information security level
or security clearance" **
 exists(sbx: subcomponents(cp)).(has_property (sbx,
SecurityClassificationProperties::Information_Security_Level))
 and
 forall(sb: subcomponents(cp)).(has_property (sb,
SecurityClassificationProperties::Information_Security_Level) or
 has_property (sb,SecurityClassificationProperties::Security_Clearance))
 --

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18
[Distribution Statement A] Approved for public release and unlimited distribution.

A.16 Encryption

(62) Encryption is declared using the Encryption property. The Encryption property is an
AADL record type and includes fields that declare encryption details.

(63) The declarations for the record type property Encryption are shown Table 17, which
is an excerpt from the SecurityEnforcementProperties property set. The declaration
of the enumerated property fields encryption_form, encryption_mode, and padding
include the entry to_be_specified, which can be used to require that the element,
to which the encryption property is assigned, must have encryption defined at some
point to complete the security specification for the system architecture.

Table 17: The Encryption Property

Encryption: record (
 description: aadlstring;
 -- an informal description of the encryption
 encryption_form: enumeration (no_encryption, symmetric, asymmetric, hybrid,
authenticated_encryption, authentication_only, to_be_specified);
 -- if the encryption form is hybrid both symmetric and asymmetric are used.
 encryption_mode: list of enumeration (no_encryption, ECB, CBC, CFB, CTR, GCM,
CBC_MAC, to_be_specified);
 -- list is needed for hybrid encryption
 encryption_algorithm: list of enumeration (no_encryption, OTP, DES, TripleDES, AES,
RSA, ECC, to_be_specified);
 -- a list is needed for hybrid encryption
 -- the mode and algorithm listings must correlate
 padding: enumeration (no_padding, OAEP, to_be_specified);
 --
 authenticated_encryption_type: enumeration (no_authenticated_encryption, GCM,
CBC_MAC, Encrypt_then_MAC, MAC_then_Encrypt, Encrypt_and_MAC, AEAD, signcryption,
double_RSA);
 key_type: list of SecurityEnforcementProperties::key_classifier; -- references
classifiers
 -- The key_type can be used to declare key length (i.e. a key classifier is declared
 -- with a Key_Length property association). A list is needed for hybrid encryption.
The key type
 -- can also be declared in the classifier for key instances or as a property of a key
instance.
 private_key: SecurityEnforcementProperties::key_instance; -- references an instance
 public_key: SecurityEnforcementProperties::key_instance; -- references an instance
 single_key: SecurityEnforcementProperties::key_instance; -- references an instance
) applies to (data, port, abstract, system, bus, memory, device, processor,
 virtual processor, virtual bus, connection, process, thread, flow);
 --

(64) The key_type field is a list of encryption key classifiers. These are used to declare
key related properties (e.g. key length) for the encryption and as classifiers for key
instances. Key related properties and property types are shown in Table 23.

(65) A summary of the semantics of the encryption property is provided in Table 18.

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19
[Distribution Statement A] Approved for public release and unlimited distribution.

Table 18: Encryption Property Semantics

When encryption is declared for a data classifier or data instance, the data is encrypted as specified.

When declared for a data or event data port, the specified encryption applies to the data buffer or
queue associated with the port (i.e. the data or event data port maps to a static variable in the source
text that represents the data buffer or queue). The data passing through the port is encrypted as
specified. The Encryption property value of the port and the data classifier for the port must be the
same.

When encryption is declared for an abstract classifier, its extensions have the specified encryption
consistent with the applicability and semantics of encryption properties for the category of the
extension.

When encryption is declared for a system classifier or instance, all data within instances of the system
classifier or within the system instance is encrypted as specified.

When encryption is declared for a bus classifier or a bus instance, encryption is provided as specified
for all data transmitted through instances of the bus classifier or for the bus instance.

When encryption is declared for a virtual bus classifier or a virtual bus instance, encryption is provided
as specified for all data transmitted through instances of the virtual bus classifier or for the virtual bus
instance.

When encryption is declared for a memory classifier or a memory instance, encryption is provided as
specified for all data contained in instances of the memory classifier or for the memory instance.

When encryption is declared for a device classifier or a device instance encryption is provided as
specified for all data contained in instances of the device classifier or for the device instances and
encryption is provided as specified for all data transmitted through instances of the device classifier or
for the device instance.

When encryption is declared for a processor classifier or a processor instance, encryption is provided
as specified for all data transmitted through instances of the processor classifier or through the
processor instance.

When encryption is declared for a virtual processor classifier or a virtual processor instance, encryption
is provided as specified for all data transmitted through instances of the virtual processor classifier or
through the virtual processor instance.

When encryption is declared for a connection instance, the supporting transmission components must
provide the specified encryption for all data transmitted through the connection. That is, the connection
requires the encryption and decryption of data as specified, such that the input and output data types at
each end of the connection are the same.

When encryption is declared for a flow, the components at each end of the flow must support the
encryption as specified.

Some of the encryption declaration record fields can be specified as “to be specified” for an
architecture model. For example, the encryption_form property field within the encryption property can
be assigned the value to_be_specified, perhaps early in the development process and later a specific
encryption property assignment can be made.

A.17 Data Authentication

(66) In general, data authentication encompasses both authenticating the origin and the
integrity of data. The Data_Authentication property is a record property as shown
in Table 19. In some cases, only one of these aspects (integrity or authenticity) is
specified using the Data_Authentication property. For example, declaring a

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20
[Distribution Statement A] Approved for public release and unlimited distribution.

message digest generated through a cryptographic hash function to ensure
integrity.

Table 19: Data Authentication Property

Data_Authentication: record
 (
 description: aadlstring;
 authentication_form: enumeration (no_authentication, MAC, MIC, signature,
signcryption, double_RSA, to_be_specified);
 authentication_algorithm: enumeration (no_authentication, RSA, ElGamal, DSA, CBC_MAC,
GCM, HMAC, UMAC, to_be_specified);
 padding : enumeration (no_padding, OAEP, to_be_specified);
 --
 -- key_Length is declared in the authentication key type classifier or
 -- in the classifier for the authentication key instance or for the key instance
 --
 hash_Length: Size; -- optional, if the message is hashed before authentication. Does
not apply to authenticated encryption.
 hash_algorithm: enumeration (no_hash, MD5, SHA1, SHA256, SHA512, SHA3,
to_be_specified);
 authentication_key_type: list of SecurityEnforcementProperties::key_classifier; --
references a classifier
 authentication_key: SecurityEnforcementProperties::key_Instance; -- references an
instance
)
applies to (data, port, abstract, system, bus, memory, device, processor, virtual processor,
virtual bus, connection, process, thread, flow);

(67) The data authentication property is used to declare that a data instance has the
authentication as specified or that authentication is required by a connection (i.e.
the data transmitted through the connection must be authenticated as specified) or
that authentication is provided by a component (e.g. bus or virtual bus supporting a
connection that requires data authentication) or when applied to a component that
can contain data (e.g. system, device, abstract) it declares that all data contained
in the component has authentication as specified.

(68) Key lengths for authentication are specified within the declarations for
authentication key types or key instances.

(69) The semantics of the Data_Authentication property are described in Table 20.

Table 20: Data Authentication Property Semantics

When Data Authentication is declared for a data classifier or data instance, the data is authenticated as
specified.

When declared for a data or event data port, the specified data authentication applies to the data buffer
or queue associated with the port (i.e. the data or event data port maps to a static variable in the
source text that represents the data buffer or queue). The data passing through the port is
authenticated as specified. The Data_Authentication property value of the port and the data classifier
for the port must be the same.

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21
[Distribution Statement A] Approved for public release and unlimited distribution.

When data authentication is declared for an abstract classifier, its extensions have the specified data
authentication consistent with the applicability and semantics of data authentication properties for the
category of the extension.

When data authentication is declared for a system classifier or instance, all data within instances of the
system classifier or within the system instance is encrypted as specified.

When data authentication is declared for a bus classifier or a bus instance, data authentication is
provided as specified for all data transmitted through instances of the bus classifier or for the bus
instance.

When data authentication is declared for a virtual bus classifier or a virtual bus instance, data
authentication is provided as specified for all data transmitted through instances of the virtual bus
classifier or for the virtual bus instance.

When data authentication is declared for a memory classifier or a memory instance, data
authentication is provided as specified for all data contained in instances of the memory classifier or for
the memory instance.

When data authentication is declared for a device classifier or a device instance data authentication is
provided as specified for all data contained in instances of the device classifier or for the device
instances and data authentication is provided as specified for all data transmitted through instances of
the device classifier or for the device instance.

When data authentication is declared for a processor classifier or a processor instance, data
authentication is provided as specified for all data transmitted through instances of the processor
classifier or through the processor instance.

When data authentication is declared for a virtual processor classifier or a virtual processor instance,
data authentication is provided as specified for all data transmitted through instances of the virtual
processor classifier or through the virtual processor instance.

When data authentication is declared for a connection instance, the supporting transmission
components must provide the specified data authentication for all data transmitted through the
connection. That is, the connection requires the data authentication and decryption of data as
specified, such that the input and output data types at each end of the connection are the same.

When declared for a flow, the components at each end of the flow must support data authentication as
specified.

A.18 Authenticated Encryption (AE)

(70) Authenticated Encryption provides message confidentiality, authenticity, and
integrity by combining an encryption algorithm with an appropriate authentication
mechanism.

(71) Both the Encryption property and the Data_Authentication property are required to
completely specify authenticated encryption. An example specification of
authenticated encryption using 2048-bit RSA encryption and an HMAC for
authentication and integrity is shown in Table 21.

Table 21: Authenticated Encryption Example

SecurityEnforcementProperties::Encryption =>
[
 description => "This defines authenticated encryption using 2048-bit RSA encryption
and an HMAC function. The recipient's public key is used for encrypting the message and a
hash function with a symmetric key is used to create a MAC”;
 encryption_form => authenticated_encryption;

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22
[Distribution Statement A] Approved for public release and unlimited distribution.

 authenticated_encryption_type=> Encrypt_then_MAC;
 encryption_algorithm => (RSA);
 key_length => (2048 bits);
 key_type => classifier (RSA2048);
 private_key => reference (RSA2048Private);
 public_key => reference (RSA2048Public);
];

SecurityEnforcementProperties::Data_Authentication =>
[
 description => "This defines the data authentication for the authenticated encryption
property for netBusB.";
 authentication_form => MAC;
 authentication_algorithm => HMAC-SHA256;
 hash_length => 256 bits; -- is this message digest length
 authentication_key=> reference (SymmeticKey128); -- the symmetric key
];

A.19 Encryption and Key Management

(72) An encryption or message authentication key can be declared as an abstract
classifier or a data classifier. Either classifier can be extended. The examples in
Table 22 extend the abstract key to create data classifiers.

Table 22: Abstract Component ‘key’

-- A 'key' is defined as an abstract component.

abstract key
end key;

-- extend abstract key to data classifiers

 data symmetricKey extends key
 end symmetricKey;

 data publicKey extends key
 end publicKey;

 data privateKey extends key
 end privateKey;

 data AESKey256 extends symmetricKey
 properties
 SecurityEnforcementProperties::keyLength => 256 bits;
 end AESKey256;

(73) Encryption and authentication key-related properties are shown in Table 23. The
CryptoPeriod is the length of time a key or certificate is valid. The Key_Classifier is
the type for the key_type field of the Encryption property shown in Table 17.

Table 23: Encryption and Authentication Key-Related Properties and Types

 Key_Length: Size applies to (abstract, data);
 --

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23
[Distribution Statement A] Approved for public release and unlimited distribution.

 Crypto_Period: Time applies to (abstract, data);
 -- The Crypto Period is the time span that a cryptographic key is authorized for use
 Text_Type: enumeration (plainText, cipherText) applies to (abstract, data);
 -- type declarations for key classifiers and instances
 Key_Classifier: type classifier (abstract, data);
 Key_Instance: type reference (data);

A.20 Key and Certificate Management

(74) Key and certificate management modeling and analysis is done using key-related
properties (Table 23) and key classifiers. Examples are shown in Table 22.

(75) Crypto key management encompasses the policies and procedures for creation,
management, distribution, use, storage, and revocation of crypto keys and digital
certificates.

(76) Key or certificate management can be modeled using an AADL annotated with
requisite security properties. For example, a certificate can be modeled using a data
classifier. As shown in Table 24.

Table 24: Certificate Modeled as an AADL Data Component

abstract CertificateAbs
end CertificateAbs;

data Certificate extends CertificateAbs
end Certificate;

data implementation Certificate.SSL_TLS
subcomponents
Subject: data subject.certificate;
Issuer: data issuer.certificate;
PeriodOfValidity: data periodOfValidity.certificate;
AdminInformation: data adminInformation.certificate;
ExtendedInformatio: data extendedInformation.certificate;
end Certificate.SSL_TLS;

A.21 Analyzing Encryption and Data Authentication

(77) The annex includes example Resolute functions and claims for analyzing
encryption in the library (AADL package) Secuirty_Enforcement_Resolute. The
library provides a basic set for use and exemplars for users to develop additional
functions and claims. Some encryption analysis claims from the
Secuirty_Enforcement_Resolute library are shown in Table 25.

Table 25: Example Resolute Encryption Functions and Claims

 -- Encryption
 has_encryption(el: aadl): bool =
 has_property (el, SecurityEnforcementProperties::Encryption)

 provides_encryption (cp:component): bool =
 has_property (cp, SecurityEnforcementProperties::Encryption)

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24
[Distribution Statement A] Approved for public release and unlimited distribution.

 connection_requires_encryption (conn: connection) : bool =
 has_property (conn, SecurityEnforcementProperties::Encryption)

 is_encrypted (dt: data) <=
 ** "The data element " dt " is encrypted" **
 has_property (dt, SecurityEnforcementProperties::Encryption)
 component_has_authenticated_encryption (cp: component) <=
 "The aadl element " cp " has or provides authenticated encryption"
 (property_member (property (cp, SecurityEnforcementProperties::Encryption),
 "encryption_form") = authenticated_encryption)

(78) The annex provides example Resolute functions and claims for analyzing data

authentication in the library (AADL package) Secuirty_Enforcement_Resolute. The
library provides a basic set for use and exemplars for users to develop additional
functions and claims. Some encryption analysis claims from the
Secuirty_Enforcement_Resolute library are shown in .

Table 26: Example Data Authentication Resolute Functions

 has_data_authentication (el: aadl): bool =
 has_property (el, SecurityEnforcementProperties::Data_Authentication)

 provides_data_authenticated_encryption (cp: component): bool =
 has_property (cp, SecurityEnforcementProperties::Data_Authentication)

 connection_requires_authenticated_encryption (conn: connection): bool =
 has_property (cp, SecurityEnforcementProperties::Data_Authentication)

A.22 Access Control and Protection

(79) The security annex provides the capability to model, assess, and assure security
access control. Access control and protection encompasses the classification of
subjects (users/subjects) and objects (information containers and computing
resources)—authorization, authentication, and access control management (i.e.
assigning and modifying classifications).

A.23 Subject Authentication

(80) The Subject Authentication property declares that a subject (component instance)
can participate or participates in authentication as specified, including
authentication negotiations employing the specified authentication protocol, or that
the component (e.g. a bus or virtual bus) supports the authentication specified. The
declaration for the Subject_Authentication property is shown in Table 27.

(81) All components engaged in authentications, including negotiations, must have the
same subject authentication protocol. Each component bound to a component
supporting authentication must have the same subject authentication protocol.

(82) When applied to an end-to-end flow, the components at each end of the flow must
support subject authentication as specified.

(83) Any of the enumeration record fields of the Subject_Authentication property can be
extended by users to include custom subject authentication approaches.

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25
[Distribution Statement A] Approved for public release and unlimited distribution.

Table 27: The Subject Authentication Property

Subject_Authentication: record
 (
 description: aadlstring;
 authentication_access_type: enumeration (no_authentication, single_password, smart_card,
ip_addr, two_factor, multi_layered, bio_metric, to_be_specified);
 two_and_multi_layered_factors : list of enumeration (no_multifactor, smart_card,
token, PIV, OTP, biometric, multi_layered, to_be_specified);
 -- the listing is such that the initial factor required for authentication is listed
first, the second factor is listed second, etc.
 authentication_protocol: enumeration (no_authentication, cert_services, EAP, PAP, SPAP,
CHAP, MS_CHAP, Radius, IAS, Kerberos, SSL, TLS, NTLM, to_be_specified) ;
 authentication_role: enumeration (no_authentication, authenticator, accessor, provider,
requirer, mutual);
)
 applies to (abstract, system, process, thread,device, processor, virtual processor,
connection, bus, virtual bus, flow);

A.24 Secure flows

(84) An end-to-end flow can be used to specify that encrypted and/or authenticated data
is transmitted and/or that subject authentication is employed between two
components. The aadlboolean property Secure_Flow with the value true, is used
to declare such a flow.

(85) The Encryption, Data_Authentication, and Subject_Authentication properties can
be assigned to an end-end-to end flow, declaring the components at each end of
the flow are interacting using the encryption and/or authentication specified.

A.25 Authorization

(86) Authorization establishes the access rights and actions of subjects and the details
of authentication procedures and protocols. The security annex does not
specifically address the modeling or analysis of authorization activities.

A.26 Access Control Modeling

(87) Core AADL elements and properties as well as security annex properties are
employed in access control modeling and analysis. Specifically, the security
properties are used to classify subjects and objects and specify authentication and
the core elements define the interconnections and access paths.

A.27 Security Architectures

(88) In modeling and analyzing specialized security architectures, the security annex
utilizes AADL core modeling capabilities, mappings of security-specific abstractions
onto AADL elements, and specialized security properties and constructs.

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26
[Distribution Statement A] Approved for public release and unlimited distribution.

(89) The annex can be used to model and analyze specialized security architectures
such as Multiple Independent Levels of Security (MILS) and Cross Domain
Solutions (CDS).

A.28 Analyzing Vulnerabilities/Threats/Attacks

(90) --TBD

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27
[Distribution Statement A] Approved for public release and unlimited distribution.

Appendix B Informative Section

The section presents support material for the use of the security annex and examples of
the application of the security annex.

B.1 Security Policies and Requirements Examples

(91) This example presents security policies and requirements for a generic E-enabled
aircraft model. As an illustrative example, it is not comprehensive and is not
intended to be used to define security policies or requirements for any operational
aircraft.

(92) An AADL model of a generic E-enabled air transport aircraft is shown in Figure 1.
Where the aircraft is represented as three major functional subsystems, aircraft
control, airline information services, passenger Information and Entertainment
Services as well as an aircraft airframe. The triad of major functional subsystems is
a partitioning into three distinct security domains for the aircraft.

Figure 1: Generic E-Enabled Transport Aircraft

B.2 Security Policies

(93) The aircraft security policies are contained in a system requirements set
TransportAircraftSecuirtyPolicies.reqspec. The developmental stakeholders for the
system are from the DevelopmentTeam organization declared in the file
Stakeholders_Development.org.

(94) An excerpt of security policies from the TransportAircraftSecurityPolicies.reqspec
requirements set file is shown in Table 28.

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28
[Distribution Statement A] Approved for public release and unlimited distribution.

Table 28: Example System Security Policies

system requirements TransportAircraftSystemSecurityPolicies: "System-Wide Security
Policies"
for TransportAircraftSystem_Generic::AirTransportOperationalSystem.multipassenger

[
 description "These are the high level (system) security policies for the
 Aircraft."

 requirement Security: "System Security must be provided"
 [
 description "Security protections that meets FAA aircraft security and
 flight worthiness certification standards must be provided ."

]

 requirement MasterSecurityPolicy: "A Master System Security Policy must be
developed and certified."
 [
 description "A master system security policy document must be developed
 and certified by all of the agencies and organizations
 involved in flight certification of the aircraft."
]

 requirement AccessControlPolicy: "Security Controlled Access to all
 Aircraft Systems and Resources must be provided."
 [

 description "Access to all Aircraft operational and maintenance
 Systems and Resources shall be permitted only by
 authorized personnel."

 development stakeholder DevelopmentTeam.PrincipalEngineer
 DevelopmentTeam.SecurityEngineer
]

 requirement SecureCommunicationsPolicy: "Secure communications must be
 provided for all flight- and safety-critical systems."
 [
 description "Communication systems must provide security measures to
 ensure only authorized access and use."

 development stakeholder DevelopmentTeam.PrincipalEngineer
 DevelopmentTeam.EncryptionExpert
]

]

B.3 Security Requirements

(95) Security requirements are captured as system requirements and organized into
named system requirements sets. Each set applies to a specific architecture

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29
[Distribution Statement A] Approved for public release and unlimited distribution.

system, subsystem, or element. An example for the aircraft control system
,AircraftControl_pkg::aircraftControl.basic, is shown in Table 29.

Table 29: Example Security Requirements Sets for Aircraft Control System

// Copyright 2019 Carnegie Mellon University. See Notice.txt
// Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
//

system requirements securityReqs for AircraftControl_pkg::aircraftControl.basic
[
 requirement aircraftSystemsInformationSecurity: "Aircraft Systems Information
Security/Protection (ASISP) must be provided"
 [
 description "All aircraft control and flight information systems must have
security protection to ensure confidentiality, integrity, and availability."
]

 requirement securityAccessReq: "Access to all aircraft data must be only by
authorized and authenticated entities"
 [
 description "All aircraft operational and performance data systems must have
security protection to ensure access only by authorized and authenticated entities."
]

 requirement communicationProtectionReq0: "All external and internal communications
relating to aircraft control and operation must be secure."
 [
 description "All aircraft communication systems must have security protection
to ensure access only by authorized and authenticated entities."
]

 requirement communicationProtectionReq1: "All aircraft external and internal
communication for aircraft control and flight operations must employ encryption algorithms"
 [
 description "All aircraft external and internal communication for aircraft control
and flight operations must employ encryption algorithms that meet or exceed the standards
defined in NIST publication FIPS 140-2 or any superseding document that has been released.”
]
]

B.4 Security Policy Verification

(96) Verification of policies and security requirements are accomplished with the verify
capabilities (i.e. the verify notation) of ALISA (OSATE). The procedures and
activities are organized using the assurance case and verification capabilities within
ALISA (i.e. the Alisa and Assure notations). The results are captured using the
Assure notation with ALISA (OSATE).

B.5 Cross Domain System Example

(97) This is a generalized cross domain solution (CDS) example that is a blend from the
references [Gehani 2012] and [Smith 2015]. It is not intended to represent any
operational system.

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30
[Distribution Statement A] Approved for public release and unlimited distribution.

(98) The model consists of three primary data stores (top secret, secret, and
unclassified) and two data stores for data that can be released (secret releasable
and unclassified for public release). There is a trusted controller (subject) who can
access and modify all three data stores (e.g. can transfer data from a lower to a
higher classification or can filter data from a higher to a lower classification). There
are downgrading filters that downgrade top secret to secret, secret to unclassified,
top secret to secret releasable, secret to secret releasable, and unclassified to
unclassified public release.

(99) To simplify the example, we use a single classification property Security_Level
rather than the security clearance and information security levels properties, which
distinguish between subjects working with data and the objects (data). The property
sets used in this work are shown in the Appendix B.6.

(100) The AADL graphical representation of the cross domain solution architecture used
in this work is shown in Figure 2.

Figure 2: AADL Model of the Cross Domain Solution Architecture

(101) The three principal data stores are TopSecretStore, SecretStore, and
UnclassifiedDataStore. The unclassified data store contains confidential and other
data that is not for public access or use and as needed, is filtered through the filter
UNtoUNP, which results in unclassified data for public release. The other filters filter
TopSecret to Secret (i.e. TStoS), TopSecret to Secret with restrictions (TStoSR),
Secret to Unclassified (StoU), and Secret to Secret with restrictions (StoSR). The
data stores SecretReleaseableStore and unclassifiedPublicStore are accessible

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31
[Distribution Statement A] Approved for public release and unlimited distribution.

from external entities (subjects). The TSAccessUnit is the system that can access
and modify all three principal data stores (e.g. can add data and “pump” data from
a lower to a higher classification or can filter data from a higher to a lower
classification). The TSAccessUnit and all of the filters are ‘Trusted’ systems.

(102) Using AADL property associations, appropriate security levels are assigned to
components. Examples are shown in Table 30.

Table 30: Security Level Property Associations

 -- security level properties --------
SecurityClassificationProperties::Security_Level => TopSecret applies to TopSecretDataStore;
SecurityClassificationProperties::Security_Level => TopSecret applies to
TopSecretDataStore.topsecretdata;
SecurityClassificationProperties::Security_Level => Secret applies to SecretDataStore;
SecurityClassificationProperties::Security_Level => Unclassified applies to
UnclassifiedDataStore;
SecurityClassificationProperties::Security_Level => Unclassified applies to
unclassifiedPublicStore;
SecurityClassificationProperties::Security_Level => Secret applies to SecretReleasableStore;
SecurityClassificationProperties::Security_Level => Unclassified applies to PublicAccess;
SecurityClassificationProperties::Security_Level => Secret applies to ThirdPartyAccess;
 -- trusted components (filters)
SecurityClassificationProperties::Trusted => true applies to TStoS;
SecurityClassificationProperties::Trusted => true applies to StoU;
SecurityClassificationProperties::Trusted => true applies to UNtoUNP;
SecurityClassificationProperties::Trusted => true applies to StoSR;
SecurityClassificationProperties::Trusted => true applies to TStoSR;
SecurityClassificationProperties::Trusted => true applies to TSAccessUnit;

(103) Example Resolute prove statements assessing security classifications within the
cross domain system and their results are shown in Table 31. These ensure that all
components have an assigned security level or are trusted and that all connected
components are connected to components of the same security level or are
connected to trusted components.

Table 31: Resolute Claims and Analysis Results

 -- security level checks
prove all_subcomponents_have_security_level(this.TopSecretDataStore) -- should be true
prove all_subcomponents_have_security_level(this.SecretDataStore) -- should be true
prove all_subcomponents_have_security_level (this) -- not true because some are trusted
prove all_subcomponents_have_security_level_or_are_trusted (this) -- should be true
prove all_contained_data_have_top_secret_security_level(this.TopSecretDataStore) -- should
be true
prove all_contained_data_have_secret_security_level(this.SecretDataStore) -- should be true
 -- security connection checks
prove connected_components_have_same_security_level (this) -- should be false (some trusted)
prove connected_systems_have_same_security_levels_or_are_connected_to_trusted(this) --
should be true

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32
[Distribution Statement A] Approved for public release and unlimited distribution.

(104) In a modified version of the model, a bus is included that represents the network
connection between the Secret Releasable Store System and the Third Party
Access Device. The specification of the authenticated encryption that is required by
the connection and is provided by the bus is shown in Table 32. Note that both the
encryption property and the Data Authentication property must be specified for
authenticated encryption.

Table 32: Example Authenticated Encryption Property Associations

SecurityEnforcementProperties::Encryption =>
 [
 description => "Defines authenticated encryption using 2048 bit RSA encryption on the
message and an HMAC function of the encrypted message for authentication and integrity. The
recipient's RSA public key is used for encrypting the message and a hash function with
symmetric (secret) key is used to create a MAC";
 encryption_form => authenticated_encryption;
 authenticated_encryption_type=> Encrypt_then_MAC;
 padding => OAEP;
 encryption_algorithm => (RSA);
 key_length => (2048 bits);
 key_type => classifier (RSA2048);
 public_key => reference (RSA2048RecipientPublic); -- recipient's public key
] applies to netBus;

SecurityEnforcementProperties::Data_Authentication =>
 [
 description => "Defines the data authentication for the authenticated encryption
property for netbus using a symmetric key HMAC.";
 authentication_form => MAC;
 authentication_algorithm => "HMAC-SHA256";
 hash_length => 256 bits; -- the message digest length
 key_length => 128 bits; -- symmetric key
] applies to netBus;

(105) In a further extension of the model, we use a MILS inspired architecture for the
TSAccessUnit implementation. The structure of the TSAccessUnit architecture
implementation is shown in Figure 3.

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33
[Distribution Statement A] Approved for public release and unlimited distribution.

Figure 3: MILS Architecture of the TSAccessUnit

(106) The architecture is layered where the application software and middleware are
modeled as threads within separate security level processes. There are top secret,
secret, and unclassified security level processes. Each process is bound to an
individual virtual processor, resulting in one virtual machine partition for each of the
security levels. These partitions are bound to a MILS separation kernel (a virtual
processor) that is bound to a hardware processor.

(107) The MILS kernel schedules each security level virtual processor on a static timeline.
The binding of the MILSKernel to the hardware processor provides the memory for
each of the partitions and these are managed at runtime as separate space
partitions, that is the Runtime_Protection property is true for each of the processes.

(108) The AADL textual specification for the MILS implementation is shown in Table 33.

Table 33: The Three Domain MILS System Implementation

system MILS
 features
 accessPortTS: in out data port;
 accessPortS: in out data port;
 transferPortUN: in out data port;
 end MILS;

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34
[Distribution Statement A] Approved for public release and unlimited distribution.

system implementation MILS.ThreeDomains
 subcomponents
 appMiddleSW: system appMiddleSW.MILS;
 MILSLayer: system MILSLayer.MILS;
 MILSKernel: virtual processor MILSKernel;
 MILSProcessor: processor MILSProcessor.basic;
 --
 properties --
 -- Schedule the partitions on a fixed timeline
 Scheduling_Protocol => (FixedTimeline) applies to MILSKernel;
--
-- Bind the applications to the virtual processors
 Actual_Processor_Binding => (reference (MILSLayer.tsMILS)) applies to
appMiddleSW.topsecretLevel;
 Actual_Processor_Binding => (reference (MILSLayer.sMILS)) applies to
appMiddleSW.secretLevel;
 Actual_Processor_Binding => (reference (MILSLayer.uncMILS)) applies to
appMiddleSW.unclassifiedLevel;
--
-- Bind the virtual processors to the separation kernel
 Actual_Processor_Binding => (reference (MILSKernel)) applies to MILSLayer.tsMILS;
 Actual_Processor_Binding => (reference (MILSKernel)) applies to MILSLayer.sMILS;
 Actual_Processor_Binding => (reference (MILSKernel)) applies to MILSLayer.uncMILS;
-- Bind MILS separation kernel to the hardware processor
 Actual_Processor_Binding => (reference (MILSProcessor)) applies to MILSKernel;

 end MILS.ThreeDomains;

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35
[Distribution Statement A] Approved for public release and unlimited distribution.

B.6 AADL Property Files

(109) The security property file SecurityClassificationProperties is shown in Table 34.

Table 34: Security Classification Properties

-- Copyright 2019 Carnegie Mellon University. See Notice.txt
-- Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

property set SecurityClassificationProperties is

 -- This property set is editable.
 -- A principal objective of these editable property sets is
 -- to enable the modification of enumerated values.
 -- For example, a user might edit the Security_Level property
 -- to have High, Medium, and Low values rather than the values
 -- assigned in this property set.
--
--
--
-- Security Classifications
--
 -- Security Clearances
 --
 -- The security clearance properties include a primary
 -- security classification (e.g. Top Secret, Secret, Confidential)
 -- and an optional supplemental security statement.
 --
 Security_Clearance: inherit enumeration (TopSecret, Secret, Confidential,
No_Clearance)
 applies to (system, device, processor, virtual processor, thread, thread group,
subprogram, subprogram group, process, abstract);
 --
 Security_Clearance_Supplement: inherit aadlstring
 applies to (system, device, processor, virtual processor, thread, thread group,
subprogram, subprogram group, process, abstract);
 --
 -- The secondary security clearance is provided in the event of multiple clearances
 -- (e.g. a clearance from two different agencies.) The secondary clearance also has a
 -- primary security classification and an optional supplemental security statement.
 --
 -- No assumption is made about the relationship between the Security_Clearance
property
 -- and the Secondary_Security_Clearance property.
 --
 Secondary_Security_Clearance: inherit enumeration (TopSecret, Secret, Confidential,
No_Clearance)
 applies to (system, device, processor, virtual processor, thread, thread group,
subprogram, subprogram group, process, abstract);
 --
 Secondary_Security_Clearance_Supplement: inherit aadlstring
 applies to (system, device, processor, virtual processor, thread, thread group,
subprogram, subprogram group, process, abstract);
--
-- Information Security Levels
 --
 -- The information security level properties include a primary
 -- data security classification (e.g. Top Secret, Secret, Confidential)

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36
[Distribution Statement A] Approved for public release and unlimited distribution.

 -- and a caveat data security statement (e.g. control markings).
 --
 Information_Security_Level: inherit enumeration (TopSecret, Secret, Confidential,
Unclassified)
 applies to (data, port, system, process, device, abstract);
 --
 -- The Information security caveats property is an enumeration.
 -- The values included in the declaration of the caveats
 -- represent a partial listing.
 -- The values can be changed and added to meet specific project or organizational
requirements.
 -- When the security level and caveat classification are "Top Secret" and
"//SI/TK//RELIDO"
 -- this specifies the concatenated classification "TOP SECRET//SI/TK//RELIDO"
 --
 Information_Security_Caveats: inherit list of enumeration (FOUO, NOFORN,
NOCONTRACTOR, PROPIN, IMCON, ORCON)
 applies to (data, port, system, process, device, abstract);

--
 -- Security Levels
 --
 -- For models which do not need to differentiate between subject security clearances
and
 -- object (information) security levels, the SecurityLevel and SecurityLevelCaveats
properties can be used.
 -- These are defined with conventional TopSecret, Secret, Confidential, and
Unclassified.
 -- However, these can be changed to more generic values (e.g. High, Medium, Low) as
desired.
 --
 Security_Level: inherit enumeration (TopSecret, Secret, Confidential, Unclassified)
 applies to (system, processor, virtual processor, thread, thread group, subprogram,
subprogram group, data, port, process, device, abstract);
 --
 Security_Level_Caveats: inherit list of enumeration (FOUO, NOFORN, NOCONTRACTOR,
PROPIN, IMCON, ORCON)
 applies to (system, processor, virtual processor, thread, thread group, subprogram,
subprogram group, data, port, process, device, abstract);

--
 -- Trusted component
 --
 -- We use trusted component/system to mean a component/system that is relied upon to
a specified extent
 -- to enforce a specified security policy and has been verified to some level to
warrant that trust.
 -- For example the trusted components of MILS [Rushby] "trusted components ...
 -- depend only on very simple environments that can be provided with strong
assurance."
 --
 -- [Rushby] Rushby, J. Separation and Integration in MILS (The MILS Constitution),
 -- Computer Science Laboratory, SRI International, Menlo Park CA 94025 USA.
 -- https://pdfs.semanticscholar.org/0398/5ca22524e10f6fab9dd966c61c4ab3de7f74.pdf
 --
 Trusted : aadlboolean applies to (system, process, thread, thread group, subprogram,
subprogram group,
 processor, virtual processor, bus, virtual bus, abstract);

end SecurityClassificationProperties;

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37
[Distribution Statement A] Approved for public release and unlimited distribution.

(110) The security property file SecurityEnforcementProperties is shown in Table 35.

Table 35: Security Enforcement Properties

-- Copyright 2019 Carnegie Mellon University. See Notice.txt
-- Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

property set SecurityEnforcementProperties is

--
-- Data Encryption
--

 -- The encryption property is used to declare that a data instance is encrypted as
specified or that encryption is required by a connection
 -- or that encryption is provided by a component (e.g. bus or virtual bus supporting
a connection that requires encryption) or when applied
 -- to a component that can contain data (e.g. system, device, abstract) it declares
that all data contained in the component is encrypted as specified
 -- or that the component encrypts data received as specified and outputs the
encrypted data.

 Encryption: record (
 description : aadlstring;
 -- an informal description of the encryption
 encryption_form : enumeration (no_encryption, symmetric,
asymmetric, hybrid, authenticated_encryption, authentication_only, to_be_specified);
 -- if the encryption form is hybrid both symmetric and asymmetric are used.
 encryption_mode : list of enumeration (no_encryption, ECB, CBC,
CFB, CTR, GCM, CBC_MAC, to_be_specified);
 -- list is needed for hybrid encryption
 encryption_algorithm: list of enumeration (no_encryption, OTP, DES,
TripleDES, AES, RSA, ECC, to_be_specified);
 -- a list is needed for hybrid encryption
 -- the mode and algorithm listings must correlate
 padding: enumeration (no_padding, OAEP, to_be_specified);
 --
 authenticated_encryption_type: enumeration (no_authenticated_encryption, GCM,
CBC_MAC, Encrypt_then_MAC, MAC_then_Encrypt, Encrypt_and_MAC, AEAD, signcryption,
double_RSA);
 key_type : list of
SecurityEnforcementProperties::key_classifier; -- references classifiers
 -- The key_type can be used to declare key length (i.e. a key classifier is
declared
 -- with a Key_Length property association). A list is needed for hybrid
encryption. The key type
 -- can also be declared in the classifier for key instances or as a property
of a key instance.
 private_key : SecurityEnforcementProperties::key_instance; --
references an instance
 public_key : SecurityEnforcementProperties::key_instance; -
- references an instance
 single_key : SecurityEnforcementProperties::key_instance; --
references an instance
) applies to (data, port, abstract, system, bus, memory, device, processor,
 virtual processor, virtual bus, connection, process,
thread, flow);
 --
 --------- encryption modes-----------
 -- Electronic Code Book (ECB)
 -- Cipher block chaining (CBC)

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38
[Distribution Statement A] Approved for public release and unlimited distribution.

 -- Ciphertext feedback (CFB)
 -- CTR mode (CM) or integer counter mode (ICM) or segmented integer counter (SIC)
mode
 -- Galois/Counter Mode (GCM) is a mode of operation for symmetric-key cryptographic
block ciphers
 -- Cipher block chaining (CBC)
 -- The Advanced Encryption Standard (AES) with five modes Electronic Code Book (ECB),
 -- Cipher Block Chaining (CBC), Cipher FeedBack (CFB), Output FeedBack (OFB), and
Counter (CTR)
 --
 ------- Authenticated Encryption --------------
 --
 -- The authenticated encryption field is used to declare that a data instance has the
authenticated encryption
 -- as specified or that authenticated encryption is required by a connection or that
authenticated encryption
 -- is provided by a component (e.g. bus or virtual bus supporting a connection that
requires authenticated encryption)
 -- or when applied to a component that can contain data (e.g. system, device,
abstract) it declares that all data
 -- contained in the component has authenticated encryption as specified.
 --
 -- The data authentication property must be specified with the
 -- authenticated encryption field declaration to define
 -- the specifics of the authentication and encryption.
 --

-- Properties and types for Encryption and Authentication Keys

 Key_Length: Size applies to (abstract, data);
 --
 Crypto_Period: Time applies to (abstract, data);
 -- The Crypto Period is the time span that a cryptographic key is authorized for use
 Text_Type: enumeration (plainText, cipherText) applies to (abstract, data);
 -- type declarations for key classifiers and instances
 Key_Classifier: type classifier (abstract, data);
 Key_Instance: type reference (data);

-- Authentication Properties

 -- Data Authentication -------
 --
 -- The data authentication property is used to specify, any one or all of, integrity
(data has not been modified) and, as appropriate
 -- authenticity (source authentication) and non-repudiation.
 --
 -- The data authentication property is used to declare that a data instance has
authentication as specified or that authentication is required by a connection
 -- or that authentication is provided by a component (e.g. bus or virtual bus
supporting a connection that requires data authentication) or when applied
 -- to a component that can contain data (e.g. system, device, abstract) it declares
that all data contained in the component has authentication as specified.
 --
 Data_Authentication: record
 (
 description : aadlstring;

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39
[Distribution Statement A] Approved for public release and unlimited distribution.

 authentication_form : enumeration (no_authentication, MAC, MIC, signature,
signcryption, double_RSA, to_be_specified);
 authentication_algorithm: enumeration (no_authentication, RSA, ElGamal, DSA,
CBC_MAC, GCM, HMAC, UMAC, to_be_specified);
 padding : enumeration (no_padding, OAEP,
to_be_specified);
 --
 -- key_Length is declared in the authentication key type classifier or
 -- in the classifier for the authentication key instance or for the key
instance.
 --
 hash_Length : Size; -- optional, if the message is
hashed before authentication. Does not apply to authenticated encryption.
 --hash_algorithm : aadlstring;
 hash_algorithm : enumeration (no_hash, MD5, SHA1,
SHA256, SHA512, SHA3, to_be_specified);
 authentication_key_type : list of
SecurityEnforcementProperties::key_classifier; -- references a classifier
 authentication_key : SecurityEnforcementProperties::key_Instance;
-- references an instance
)
 applies to (data, port, abstract, system, bus, memory, device, processor,
 virtual processor, virtual bus, connection, process, thread,
flow);

 -- Subject Authentication -------
 --
 --The Subject Authentication property declares that a subject (component instance)
can participate or participates in authentication as specified,
 -- including authentication negotiations employing the specified authentication
protocol, or that the component (e.g. a bus or virtual bus) supports the
 -- authentication specified.
 --

 Subject_Authentication: record
 (
 description : aadlstring;
 authentication_access_type: enumeration (no_authentication, single_password,
smart_card, ip_addr, two_factor, multi_layered, bio_metric, to_be_specified);
 two_and_multi_layered_factors : list of enumeration (no_multifactor, smart_card,
token, PIV, OTP, biometric, multi_layered, to_be_specified);
 -- the listing is such that the initial factor required for authentication is listed
first, the second factor is listed second, etc.
 authentication_protocol: enumeration (no_authentication, cert_services, EAP, PAP,
SPAP, CHAP, MS_CHAP, Radius, IAS, Kerberos, SSL, TLS, NTLM, to_be_specified) ;
 authentication_role: enumeration (no_authentication, authenticator, accessor,
provider, requirer, mutual);
)
 applies to (abstract, system, process, thread,device, processor, virtual processor,
connection, bus, virtual bus, flow);

 -- two_factor is a subset of multi_layered but is included since it is a prevalent
multi-layered type.
 --
 -- Acronyms and values ----
 -- The Password Authentication Protocol (PAP)
 -- The Shiva PAP (SPAP)
 -- Challenge Handshake Authentication Protocol (CHAP)
 -- Microsoft CHAP (MS-CHAP)
 -- The Extensible Authentication Protocol (EAP)
 -- Remote Authentication Dial-In User Service (RADIUS)

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40
[Distribution Statement A] Approved for public release and unlimited distribution.

 -- Internet Authentication Service (IAS)
 -- Secure Socket Layer (SSL)
 -- Transport Layer Security (TLS)
 -- NT (New Technology) LAN Manager (NTLM) is a suite of Microsoft security
protocols
 -- intended to provide authentication, integrity, and confidentiality to
users.
 -- Kerberos
 -- Certificate services (cert_services)

 -- secure end-to-end flows

 Secure_Flow: aadlboolean applies to (flow);
 --
 -- The Secure_Flow property specifies that the data in an end-to-end flow
 -- is not altered by any element along the flow.

 -- certificate and encryption key management properties

 Key_Distribition_Method: enumeration (public_broadcast_channel,
public_one_to_one_channel, encrypted_channel, QKD, direct_physical_exchange, courier)
applies to (all);
 --authenticated_channel? encrypted_and_authenticated_channel?

--
-- Properties related to the platform and its support for security enforcement
--
 -- name of the operating system used
 -- associated with the application component, the virtual processor, or
processor/(hardware) system
 OS: aadlstring applies to (all);

 -- name of the programming language used; associated with an application component
 Language: aadlstring applies to (all);

 -- external exposure of component, physical or some other form
 Exposed : aadlboolean applies to (bus, virtual bus, processor, device, system,
memory);

end SecurityEnforcementProperties;

Table 36: Custom Security Package

-- Copyright 2019 Carnegie Mellon University. See Notice.txt
-- Distribution Statement A: Approved for Public Release; Distribution is
Unlimited.

-- This package contains specific component and other AADL declarations as examples
for Security modeling and analysis.

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41
[Distribution Statement A] Approved for public release and unlimited distribution.

package SecurityAnnexCustomPkg

public

with SecurityEnforcementProperties;

-- A security 'key' is defined as an abstract component.

abstract key
end key;

-- extend abstract key to data classifiers

 data symmetricKey extends key
 end symmetricKey;

 data publicKey extends key
 end publicKey;

 data privateKey extends key
 end privateKey;

 data AESKey256 extends symmetricKey
 properties
 SecurityEnforcementProperties::key_Length => 256 bits;
 end AESKey256;

 -- certificates
 abstract CertificateAbs
 end CertificateAbs;

 data Certificate extends CertificateAbs
 end Certificate;

 data subject
 end subject;

 data implementation subject.certificate
 end subject.certificate;

 data issuer
 end issuer;

 data implementation issuer.certificate
 end issuer.certificate;

 data periodOfValidity
 end periodOfValidity;

 data implementation periodOfValidity.certificate
 end periodOfValidity.certificate;

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42
[Distribution Statement A] Approved for public release and unlimited distribution.

 data AdminInformation
 end AdminInformation;

 data implementation AdminInformation.certificate
 end AdminInformation.certificate;

 data extendedInformation
 end extendedInformation;

 data implementation extendedInformation.certificate
 end extendedInformation.certificate;

 data implementation Certificate.TLS_SSL
 subcomponents
 Subject: data subject.certificate;
 Issuer: data issuer.certificate;
 PeriodOfValidity: data periodOfValidity.certificate;
 AdminInformation: data adminInformation.certificate;
 ExtendedInformatio: data extendedInformation.certificate;
 end Certificate.TLS_SSL;

end SecurityAnnexCustomPkg;

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43
[Distribution Statement A] Approved for public release and unlimited distribution.

4 Normative References
[DO-356]
Standard: RTCA DO-356, Airworthiness Security Methods and Consideration, 2014-09-23,
http://standards.globalspec.com/std/9870299/rtca-do-356.

[DO-178B/C]
DO-178B/C Software Considerations in Airborne Systems and Equipment Certification, December 1992.
Revised, December 2011.

[DO-254]
DO-254 Design Assurance Guidance for Airborne Electronic Hardware, April 2000.

5 Informative References
[Anderson 2008]
Anderson, R. Security Engineering. 2nd Edition, Wiley, 2008.

[Arce 2014]
Arce, I. et al. AVOIDING THE TOP 10 SOFTWARE SECURITY DESIGN FL AWS, IEEE Center for Secure
Design, IEEE Computer Society, https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf.

 [CNSS]
Committee on National Security Systems (CNSS) Glossary, CNSSI No. 4009, April 6, 2015

 [CWE]
Common Weakness Enumeration, http://cwe.mitre.org/index.html.

[Feiler 2016]
Feiler, P. H.; Delange, J.; Gluch, D. P.; & McGregor, J.D. Architecture-Led Safety Process. CMU/SEI-2016-
TR-012. Software Engineering institute, Carnegie Mellon University. 2016.
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=484826.

[Gehani 2012]
Gehani, A & Ciocarlie, G. F. Composing Cross-Domain Solutions, 2nd Layered Assurance Workshop (LAW),
affiliated with the 28th Annual Computer Security Applications Conference (ACSAC), 2012,
www.csl.sri.com/users/gehani/papers/LAW-2012.Streaming.pdf.

[Hansson 2008]
Hansson, J. & Feiler, P. H. Building Secure Systems using Model-Based Engineering and Architectural
Models, Software Engineering Institute White Paper, https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=29187.

[LAW]
The Law Dictionary, http://thelawdictionary.org/article/what-is-public-trust-security-clearance/

http://standards.globalspec.com/std/9870299/rtca-do-356
https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf
http://cwe.mitre.org/index.html
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=484826
http://www.csl.sri.com/users/gehani/papers/LAW-2012.Streaming.pdf
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=29187
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=29187
http://thelawdictionary.org/article/what-is-public-trust-security-clearance/

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44
[Distribution Statement A] Approved for public release and unlimited distribution.

[Leveson 2012]
Leveson, Nancy, G. Engineering a Safer World: Systems Thinking Applied to Safety. The MIT Press.
2012.

[Mirakhorli 2016]
Mirakhorli, M. Common Architecture Weakness Enumeration (CAWE), IEEE Software Blog, April 25, 2016,
http://blog.ieeesoftware.org/2016/04/common-architecture-weakness.html.

[NIST 2016]
Ross, R; McEvilley, M; and Oren, J. C. Systems Security Engineering: Considerations for a Multidisciplinary
Approach in the Engineering of Trustworthy Secure Systems, NIST Special Publication 800-160, November
2016.

[NIST 2012]
NIST SP 800-30 Rev 1, Guide for Conducting Risk Assessments, National Institute of Standards and
Technology, September 2012.

[OCL 2006]
Object Management Group (OMG); Object Constraint Language OMG Available Specification Version 2.0,
May 2006.

[Resolute 2014]
Andrew Gacek, John Backes, Darren Cofer, Konrad Slind, & Mike Whalen, “Resolute: an assurance case
language for architecture models,” Proceedings of the 2014 ACM SIGAda annual conference on High integrity
language technology, Portland, Oregon, USA, October 18 - 21, 2014, pages 19-28.

[BKCASE 2016]
BKCASE Editorial Board. 2016. The Guide to the Systems Engineering Body of Knowledge (SEBoK), v.
1.7. R.D. Adcock (EIC). Hoboken, NJ:

[Rushby 2008]
Rushby, J. Separation and Integration in MILS (The MILS Constitution), Technical Report SRI-CSL-08-
XX, February 2008, Computer Science Laboratory, SRI International, Menlo Park CA 94025 USA.
https://pdfs.semanticscholar.org/0398/5ca22524e10f6fab9dd966c61c4ab3de7f74.pdf

[Smith 2015]
Smith, Scott D. Shedding Light on Cross Domain Solutions, SANS Institute InfoSec Reading Room,
November 6, 2015, https://www.sans.org/reading-room/.../shedding-light-cross-domain-solutions-36492.

[Shawn Fitzgerald]
Fitzgerald, Shawn, ”An Introduction to Authenticated Encryption,” March, 2013.
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2013/april/an-introduction-to-
authenticated-encryption/ .

 [Wiki-Trusted]
https://en.wikipedia.org/wiki/Trusted_system

[DND] Department of Defence Canada

http://blog.ieeesoftware.org/2016/04/common-architecture-weakness.html
https://pdfs.semanticscholar.org/0398/5ca22524e10f6fab9dd966c61c4ab3de7f74.pdf
https://www.sans.org/reading-room/.../shedding-light-cross-domain-solutions-36492
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2013/april/an-introduction-to-authenticated-encryption/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2013/april/an-introduction-to-authenticated-encryption/
https://en.wikipedia.org/wiki/Trusted_system

DRAFT Version August 2019 – for review only

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45
[Distribution Statement A] Approved for public release and unlimited distribution.

	3 List of Tables
	1 Table of Contents
	2 List of Figures
	3 List of Tables
	A.1 Scope
	A.2 Rationale
	A.3 Approach
	A.4 Terminology
	A.5 Overview
	A.6 Security Policies and Requirements
	A.7 Documenting Security Policies and Requirements
	A.8 Verification of Security Policies and Requirements
	A.9 Information Security Levels
	A.10 Information/Data Protection
	A.11 Security Clearances
	A.12 Security Level Property
	A.13 Trusted Components
	A.14 Property Set Modification
	A.15 Analyzing Security Levels
	A.16 Encryption
	A.17 Data Authentication
	A.18 Authenticated Encryption (AE)
	A.19 Encryption and Key Management
	A.20 Key and Certificate Management
	A.21 Analyzing Encryption and Data Authentication
	A.22 Access Control and Protection
	A.23 Subject Authentication
	A.24 Secure flows
	A.25 Authorization
	A.26 Access Control Modeling
	A.27 Security Architectures
	A.28 Analyzing Vulnerabilities/Threats/Attacks

	Appendix B Informative Section
	B.1 Security Policies and Requirements Examples
	B.2 Security Policies
	B.3 Security Requirements
	B.4 Security Policy Verification
	B.5 Cross Domain System Example
	B.6 AADL Property Files

	4 Normative References
	5 Informative References

